An efficient and accurate optimization method for the chemical-diffusive model

Abstract The reaction and diffusion parameters of the recently developed Chemical-Diffusive Model for flame acceleration and deflagration-to-detonation transition are generally determined through an optimization procedure based on global or one-dimensional properties of flames and detonations. The current genetic algorithm optimization procedure requires repeated computations of a flame profile and Zel’dovich-Neumann-Doring structure to extract combustion properties using various parameter combinations. Here, we show that the combustion properties of interest can be found from closed-form expressions based on analytical or asymptotic results, and the optimal parameters become roots of a system of nonlinear equations. The calibrated Chemical-Diffusive Model using the new procedure is generally as accurate as those using the current optimization approach and extends the possibilities to non-unity Lewis numbers.