Physical and astrophysical aspects of the problem of origin of chiral asymmetry of the biosphere

A brief survey of different models of the origin of chiral asymmetry of the biosphere is given. Main attention is paid to the discussion of the radiation mechanism of chiral action and the possible role of supernovae in the cosmological scenario of the origin of biological homochirality.

[1]  A. Moradpour,et al.  Can circularly polarized light be used to obtain chiral compounds of high optical purity? , 1974, Journal of Molecular Evolution.

[2]  L. Keszthelyi Origin of the asymmetry of biomolecules and weak interaction , 1977, Origins of life.

[3]  C. Chyba Impact delivery and erosion of planetary oceans in the early inner Solar System , 1990, Nature.

[4]  D. Kondepudi,et al.  Weak neutral currents and the origin of biomolecular chirality , 1985, Nature.

[5]  Robert A. Harris,et al.  On the stabilization of optical isomers through tunneling friction , 1983 .

[6]  A. Lyne Astrophysics: Origins of the magnetic fields of neutron stars , 1984, Nature.

[7]  Y. Yamagata,et al.  Computer experiment for selection of optical isomer during prebiotic polymerization , 1980, Origins of life.

[8]  N. Hokkyo Circularly polarized solar radio bursts associated with sunspot activities and their possible significance in the formation of chirally asymmetric biotic substances from a chirally symmetric prebiotic medium , 2004, Origins of life.

[9]  K. Soai,et al.  d- and l-Quartz-Promoted Highly Enantioselective Synthesis of a Chiral Organic Compound , 1999 .

[10]  W. Bonner,et al.  Supernovae and life , 1983, Nature.

[11]  D. H. Clark Chapter 1 – NEW STARS — NOVAE AND SUPERNOVAE , 1977 .

[12]  S. Macko,et al.  Isotopic evidence for extraterrestrial non- racemic amino acids in the Murchison meteorite , 1997, Nature.

[13]  E. Broda Dissident remarks on the origin of optical activity an intrabiological explanation , 2004, Origins of life.

[14]  L. Orgel,et al.  Studies in prebiotic synthesis. VII , 1972, Journal of Molecular Evolution.

[15]  A. Beloborodov,et al.  Neutron-fed Afterglows of Gamma-Ray Bursts , 2002, astro-ph/0209228.

[16]  J. M. Greenberg,et al.  The structure and evolution of interstellar grains. , 1984 .

[17]  B. Wallace,et al.  Synchrotron radiation circular dichroism spectroscopy of proteins and applications in structural and functional genomics. , 2006, Chemical Society reviews.

[18]  G. A. Gusev,et al.  A Relativistic Neutron Fireball from a Supernova Explosion as a Possible Source of Chiral Influence , 2007, Origins of Life and Evolution of Biospheres.

[19]  T. Ulbricht Reflections on the origin of optical asymmetry on earth , 1981, Origins of life.

[20]  H. Aggarwal,et al.  Comet impacts and chemical evolution on the bombarded Earth , 1991, Origins of life and evolution of the biosphere.

[21]  Kenso Soai,et al.  Highly Enantioselective Catalytic Asymmetric Automultiplication of Chiral Pyrimidyl Alcohol , 1996 .

[22]  J. Lederberg,et al.  Signs of Life: Criterion-System of Exobiology , 1965, Nature.

[23]  A. Brack,et al.  Reflections on Molecular Asymmetry and Appearance of Life , 1983 .

[24]  J. Micheau,et al.  Review Chiral resolutions, asymmetric synthesis and amplification of enantiomeric excess , 1988 .

[25]  D. Williams,et al.  A list of interstellar molecules , 1980, Nature.

[26]  W. H. Mills Some aspects of stereochemistry , 1932 .

[27]  Jianhua Xu,et al.  Results of the Second Stage of the Investigation of the Radiation Mechanism of Chiral Influence (RAMBAS-2 Experiment) , 2008, Origins of Life and Evolution of Biospheres.

[28]  Yosuke Matsushima,et al.  Vacuum-Ultraviolet Circular Dichroism of Amino Acids as Revealed by Synchrotron Radiation Spectrophotometer , 2002 .

[29]  Herman Winick,et al.  Properties of Synchrotron Radiation , 1980 .

[30]  A. Meister THE BIOCHEMISTRY OF THE AMINO ACIDS , 1958 .

[31]  M. Waldrop Goodbye to the warm little pond? , 1990, Science.

[32]  K. Harada,et al.  Origin and development of optical activity of organic compounds on the primordial Earth , 2004, Naturwissenschaften.

[33]  G. W. Nelson,et al.  Chiral-symmetry breaking in nonequilibrium systems , 1983 .

[34]  L. Barron True and false chirality and parity violation , 1986 .

[35]  V. Letokhov On difference of energy levels of left and right molecules due to weak interactions , 1975 .

[36]  F. Frank,et al.  On spontaneous asymmetric synthesis. , 1953, Biochimica et biophysica acta.

[37]  R. Compton,et al.  The Chirality of Biomolecules , 2002 .

[38]  Kensei Kobayashi,et al.  Formation of Organic Compounds in Simulated Interstellar Media with High Energy Particles , 1997 .

[39]  H. Krauch,et al.  Optische Aktivität und die Paritätsverletzung im β-Zerfall , 2004, Naturwissenschaften.

[40]  R. Hegstrom β Decay and the origins of biological chirality: theoretical results , 1982, Nature.

[41]  W. Bonner,et al.  Asymmetric adsorption by quartz: A model for the prebiotic origin of optical activity , 1975, Origins of life.

[42]  V. Oberbeck,et al.  Impact constraints on the environment for chemical evolution and the continuity of life , 2005, Origins of life and evolution of the biosphere.

[43]  T. Ulbricht The origin of optical asymmetry on earth , 1975, Origins of life.

[44]  W. Meiring Nuclear β-decay and the origin of biomolecular chirality , 1987, Nature.

[45]  Staneous IulRI,et al.  Spontaneous mirror symmetry breaking in nature and the origin of life , 1989, Origins of life and evolution of the biosphere.

[46]  J. Marcus,et al.  Biological Implications of Organic Compounds in Comets , 1989 .

[47]  Sherwood Chang,et al.  Organic matter in meteorites: molecular and isotopic analyses of the Murchison meteorite. , 1993 .

[48]  A. H. Delsemme,et al.  Cometary origin of carbon, nitrogen and water on the Earth , 1991, Origins of life and evolution of the biosphere.

[49]  M. Rees,et al.  Supernovae: A survey of current research , 1982 .

[50]  L. Barron CP violation and molecular physics , 1994 .

[51]  Laurence D. Barron,et al.  Molecular Light Scattering and Optical Activity: Second Edition, revised and enlarged , 1983 .

[52]  W. F. Huebner,et al.  Comets as a possible source of prebiotic molecules , 1991, Origins of life and evolution of the biosphere.

[53]  A. Brack THE MOLECULAR ORIGINS OF LIFE CAMBRIDGE , 1998 .

[54]  L. Stodolsky Speculations on Detection of the "Neutrino Sea." , 1975 .

[55]  Dilip K. Kondepudi,et al.  The Handedness of the Universe. , 1990 .

[56]  W. Bonner,et al.  The origin and amplification of biomolecular chirality , 2005, Origins of life and evolution of the biosphere.

[57]  S. Pizzarello,et al.  Enantiomeric Excesses in Meteoritic Amino Acids , 1997, Science.

[58]  E. Roulet Neutrino Astrophysics , 2000, astro-ph/0011570.

[59]  Vitalii I. Goldanskii,et al.  Facts and hypotheses of molecular chemical tunnelling , 1979, Nature.

[60]  J. Chela-Flores Comments on a novel approach to the role of chirality in the origin of life , 1991 .

[61]  J. Mayo Greenberg Chemical evolution in space , 2004, Origins of life.

[62]  V. V. Kuz'min,et al.  Sensitivity of chemical chiral systems to weak asymmetric factors , 1987 .

[63]  L. Keszthelyi Origin of the homochirality of biomolecules , 1995, Quarterly Reviews of Biophysics.

[64]  J. Greenberg,et al.  The Largest Molecules in Space: Interstellar Dust , 1983 .

[65]  Y Yamagata,et al.  A hypothesis for the asymmetric appearance of biomolecules on earth. , 1966, Journal of theoretical biology.

[66]  Robert A. Harris,et al.  Two state systems in media and “Turing's paradox” , 1982 .

[67]  W. Kuhn,et al.  Photochemische Erzeugung optisch aktiver Stoffe , 2005, Naturwissenschaften.

[68]  J L Bada,et al.  Racemization and the origin of optically active organic compounds in living organisms. , 1987, Bio Systems.

[69]  Pedro Bargueño,et al.  The Role of Supernova Neutrinos on Molecular Homochirality , 2006, Origins of Life and Evolution of Biospheres.

[70]  M. Grosjean,et al.  Optical circular dichroism : principles, measurements, and applications , 1965 .

[71]  G. Chanmugam Magnetic Fields of Degenerate Stars , 1992 .

[72]  G. Klein,et al.  EB virus-induced B lymphocyte cell lines producing specific antibody , 1977, Nature.

[73]  Laurence D. Barron,et al.  True and false chirality and absolute asymmetric synthesis , 1986 .

[74]  M. Frank-Kamenetskii,et al.  Quantum Low-Temperature Limit of a Chemical Reaction Rate , 1973, Science.

[75]  K. Soai,et al.  Enantioselective automultiplication of chiral molecules by asymmetric autocatalysis. , 2000, Accounts of Chemical Research.

[76]  J. S. B. Dick,et al.  The optical polarization of the Crab Pulsar , 1988 .

[77]  M. Eigen Selforganization of matter and the evolution of biological macromolecules , 1971, Naturwissenschaften.

[78]  K. Wagener Amplification processes for small primary differences in the properties of enantiomers , 1974, Journal of Molecular Evolution.

[79]  M. Simonius Spontaneous Symmetry Breaking and Blocking of Metastable States , 1978 .

[80]  F. Hund Zur Deutung der Molekelspektren. III. , 1927 .

[81]  S. Rose,et al.  The Chemistry Of Life , 1966 .

[82]  T. Gehrels,et al.  UPPER LIMIT TO CIRCULAR POLARIZATION OF OPTICAL PULSAR NP 0532. , 1971 .

[83]  F. Hund Zur Deutung der Molekelspektren. IV , 1927 .

[84]  S. Hayakawa,et al.  Cosmic ray physics , 1969 .

[85]  J. Oró,et al.  Comets and the Formation of Biochemical Compounds on the Primitive Earth , 1961, Nature.

[86]  Takahashi Junichi,et al.  Asymmetric synthesis of amino acid precursors in interstellar complex organics by circularly polarized light , 2007 .

[87]  F. Coroniti,et al.  Laminar wave-train structure of collisionless magnetic slow shocks , 1971 .

[88]  M. Khasanov,et al.  Optical activity and evolution. , 1981, Journal of theoretical biology.

[89]  D. A. Green,et al.  The historical supernovae , 2003, astro-ph/0301603.

[90]  Sidney W. Fox,et al.  The chemical problem of spontaneous generation , 1957 .

[91]  L. Stodolsky,et al.  Quantum beats in optical activity and weak interactions , 1978 .

[92]  R. Lemmon Chemical Evolution , 1972, Nature.

[93]  J. Lattimer,et al.  Supernovae, grains and the formation of the Solar System , 1977, Nature.

[94]  D. Rein Some remarks on parity violating effects of intramolecular interactions , 1974, Journal of Molecular Evolution.

[95]  A. Salam The role of chirality in the origin of life , 1991, Journal of Molecular Evolution.

[96]  K. Soai,et al.  Chapter 11 – Asymmetric Autocatalysis and Biomolecular Chirality , 1999 .

[97]  L. Morozov Mirror symmetry breaking in biochemical evolution , 1979, Origins of life.

[98]  Julian Chela-Flores,et al.  The origin of chirality in protein amino acids , 1994 .

[99]  Jeremy Bailey,et al.  Astronomical Sources of Circularly Polarized Light and the Origin of Homochirality , 2001, Origins of life and evolution of the biosphere.

[100]  C. Chyba,et al.  Cometary delivery of organic molecules to the early Earth. , 1990, Science.

[101]  M. Bodanszky,et al.  Biosynthesis of peptide antibiotics. , 1971, Annual review of biochemistry.

[102]  T. Ulbricht CHAPTER 1 – The Optical Asymmetry of Metabolites , 1962 .

[103]  Jianhua Xu,et al.  First Results of the RAMBAS Experiment on Investigation of the Radiation Mechanism of Chiral Influence , 2008, Origins of Life and Evolution of Biospheres.

[104]  Malcolm S. Longair,et al.  High energy astrophysics: The contents of the Universe – the grand design , 1981 .

[105]  L. Barron Optical activity and time reversal , 1981 .

[106]  Chen Ning Yang,et al.  Question of Parity Conservation in Weak Interactions , 1956 .

[107]  J. M. Greenberg,et al.  Photochemical reactions in interstellar grains photolysis of co, NH3, and H2O , 2005, Origins of life and evolution of the biosphere.

[108]  Carl Sagan,et al.  Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life , 1992, Nature.

[109]  Fred Hoyle,et al.  Diseases From Space , 1979 .

[110]  Nuclear Composition of Gamma-Ray Burst Fireballs , 2002, astro-ph/0210522.

[111]  F. Hoyle,et al.  Bacterial life in space , 1983, Nature.

[112]  J. van Paradijs,et al.  Interstellar dust, chirality, comets and the origins of life: Life from dead stars? , 1995 .

[113]  Nonbiotic Origin of Optical Activity , 1971, Nature.

[114]  T. Ulbricht Asymmetry: the non-conservation of parity and optical activity , 1959 .

[115]  V. Goldanskii,et al.  Comparative analysis of the role of statistical fluctuations and factor of advantage (parity nonconservation) in the origins of optical activity , 1983, Origins of life.

[116]  L. Barron Reactions of chiral molecules in the presence of a time-non-invariant enantiomorphous influence: a new kinetic principle based on the breakdown of microscopic reversibility , 1987 .

[117]  Kenso Soai,et al.  Amplification of a Slight Enantiomeric Imbalance in Molecules Based on Asymmetric Autocatalysis: The First Correlation between High Enantiomeric Enrichment in a Chiral Molecule and Circularly Polarized Light , 1998 .

[118]  W. Bonner,et al.  Supernovae, neutron stars and biomolecular chirality. , 1987, Bio Systems.

[119]  L. Sedov Similarity and Dimensional Methods in Mechanics , 1960 .