Diffusion systems: stability, modeling, and identification

Physical phenomena governed by diffusion (for example, mass or heat transfer) are often better described by rational transfer function models G(/spl radic/s) in /spl radic/s than by rational forms G(s) in the Laplace variable s. A striking difference between both models is that the impulse response of G(s) decreases exponentially to zero, while that of G(/spl radic/s) decreases algebraically to zero. Hence, transient effects in diffusion phenomena may last long before they can be neglected in, for example, frequency response function measurements. This paper presents an extended transfer function model and an identification algorithm that can handle the slowly decaying transients and, as a consequence, (significantly) reduce the experiment time.

[1]  A. Sommerfeld Partial Differential Equations in Physics , 1949 .

[2]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[3]  Rik Pintelon,et al.  Instantaneous impedance measurements on aluminium using a Schroeder multisine excitation signal , 2004 .

[4]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[5]  J. Battaglia,et al.  Solving an inverse heat conduction problem using a non-integer identified model , 2001 .

[6]  E Vangheem Instantaneous impedance measurements on aluminium using a Schroeder multisine excitation signal , 2004 .

[7]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[8]  G. Montseny,et al.  Boundary fractional derivative control of the wave equation , 1995, IEEE Trans. Autom. Control..

[9]  Henry C. Thacher,et al.  Applied and Computational Complex Analysis. , 1988 .

[10]  A. Palazotto,et al.  Viscoelastic material response with a fractional-derivative constitutive model , 1996 .

[11]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[12]  Wei Zhang,et al.  Fractional Calculus Approach to Dynamic Problems of Viscoelastic Materials , 1999 .

[13]  Rik Pintelon,et al.  Identification of continuous-time systems using arbitrary signals , 1997, Autom..

[14]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[15]  J. Schoukens,et al.  Box-Jenkins identification revisited - Part I: Theory , 2006, Autom..

[16]  R. Geroch Partial Differential Equations of Physics , 1996, gr-qc/9602055.

[17]  Yves Rolain,et al.  Box-Jenkins continuous-time modeling , 2000, Autom..

[18]  S. Sakakibara Properties of Vibration with Fractional Derivative Damping of Order 1/2. , 1997 .

[19]  M. Orazem,et al.  A Mathematical Model for the Radially Dependent Impedance of a Rotating Disk Electrode , 1999 .

[20]  Gerd Vandersteen,et al.  Frequency-domain system identification using non-parametric noise models estimated from a small number of data sets , 1997, Autom..

[21]  A. Oustaloup,et al.  Fractional Differentiation in Passive Vibration Control , 2002 .

[22]  A. Compte,et al.  Theory of the electrochemical impedance of anomalous diffusion , 2001 .