Analysis of structural trends of sub-sea-floor strata in the Isfjorden area of the West Spitsbergen Fold-and-Thrust Belt based on multichannel seismic data

A dense grid of 2D multichannel seismic data was used for the interpretation of sub-sea-floor structures in the area of Isfjorden in western Spitsbergen. West Spitsbergen underwent Eocene transpressional deformation that resulted in formation of the West Spitsbergen Fold-and-Thrust Belt. Three horizons were defined for the seismic interpretation as well-expressed and continuous reflections: (1) the top of the metamorphic basement; (2) the base of the upper Carboniferous Nordenskiöldbreen Formation; (3) the base of the Lower Cretaceous Helvetiafjellet Formation. Time–structure maps and analysis of the sub-bottom structural trends were generated for each horizon. The top of the metamorphic basement displays north–south-trending graben structures, apparently representing continuation of the Devonian grabens from northern Spitsbergen. The tectonostratigraphic unit bounded by the base of the upper Carboniferous Nordenskiöldbreen Formation and base of the Helvetiafjellet Formation encloses the fold-and-thrust belt and is affiliated with WSW–ENE shortening involving three décollement levels. Within this unit the strata between the middle (Triassic shales) and upper (Upper Jurassic shales) décollements have undergone the most intense strain, whereas sediments situated between the basal (lower Permian evaporites) and middle décollements underwent a relatively mild deformation. The strata above the base of the Helvetiafjellet Formation are characterized by minor Tertiary deformation only.

[1]  A. Braathen,et al.  Along-strike changes in fault array and rift basin geometry of the Carboniferous Billefjorden Trough, Svalbard, Norway , 2012 .

[2]  R. Mjelde,et al.  Seafloor expression and shallow structure of a fold-and-thrust system, Isfjorden, west Spitsbergen , 2012 .

[3]  A. Braathen,et al.  A transpressional origin for the West Spitsbergen fold‐and‐thrust belt: Insight from analog modeling , 2011 .

[4]  D. Sokoutis,et al.  The effect of convergence angle on the kinematic evolution of strain partitioning in transpressional brittle wedges: Insight from analog modeling and high‐resolution digital image analysis , 2011 .

[5]  H. Maher,et al.  Late Devonian transpressional tectonics in Spitsbergen, Svalbard, and implications for basement uplift of the Sørkapp–Hornsund High , 2011, Journal of the Geological Society.

[6]  C. Gaina,et al.  Palaeocene–Recent plate boundaries in the NE Atlantic and the formation of the Jan Mayen microcontinent , 2009, Journal of the Geological Society.

[7]  S. Mazur,et al.  A strike-slip terrane boundary in Wedel Jarlsberg Land, Svalbard, and its bearing on correlations of SW Spitsbergen with the Pearya terrane and Timanide belt , 2009, Journal of the Geological Society.

[8]  S. Mazur,et al.  Late Neoproterozoic amphibolite-facies metamorphism of a pre-Caledonian basement block in southwest Wedel Jarlsberg Land, Spitsbergen: new evidence from U–Th–Pb dating of monazite , 2008, Geological Magazine.

[9]  J. Faleide,et al.  Opening of the Fram Strait gateway: A review of plate tectonic constraints , 2008 .

[10]  Olav,et al.  Structure and evolution of the continental margin off Norway and the Barents Sea , 2008 .

[11]  H. Fossen,et al.  From the Early Paleozoic Platforms of Baltica and Laurentia to the Caledonide Orogen of Scandinavia and Greenland , 2008 .

[12]  D. Worsley The post-Caledonian development of Svalbard and the western Barents Sea , 2008 .

[13]  J. Ebbing,et al.  An improved tectonic model for the Eocene opening of the Norwegian–Greenland Sea: Use of modern magnetic data , 2007 .

[14]  D. Blomeier,et al.  Geology of Svalbard , 2007 .

[15]  O. Lacombe,et al.  Basement‐involved shortening and deep detachment tectonics in forelands of orogens: Insights from recent collision belts (Taiwan, Western Alps, Pyrenees) , 2002 .

[16]  K. Saalmann,et al.  Thrust tectonics on Brøggerhalvøya and their relationship to the Tertiary West Spitsbergen Fold-and-Thrust Belt , 2002, Geological Magazine.

[17]  K. Piepjohn,et al.  Eocene Compressive Deformation in Arctic Canada, N orth Greenland and Svalbard and Its Plate Teetonic Causes , 2000 .

[18]  N. Pickard,et al.  Upper Carboniferous to Lower Permian transgressive-regressive sequences of central Spitsbergen, Arctic Norway , 1999 .

[19]  A. Braathen,et al.  Application of a critical wedge taper model to the Tertiary transpressional fold-thrust belt on Spitsbergen, Svalbard , 1999 .

[20]  L. M. Anderson,et al.  The Geology of Svalbard , 1998 .

[21]  A. Braathen,et al.  Interaction of Basement-Involved and Thin-Skinned Tectonism in the Tertiary Fold-Thrust Belt of Central Spitsbergen, Svalbard , 1997 .

[22]  A. Braathen,et al.  Kinematics of Tertiary deformation in the basement-involved fold-thrust complex, western Nordenskiøld Land, Svalbard: tectonic implications based on fault-slip data analysis , 1995 .

[23]  A. Braathen,et al.  Structural outline of a Tertiary Basement‐cored uplift/inversion structure in western Spitsbergen, Svalbard: Kinematics and controlling factors , 1995 .

[24]  A. Sirotkin,et al.  Grenvillian U-Pb zircon ages of quartz porphyry and rhyolite clasts in a metaconglomerate at Vimsodden, southwestern Spitsbergen , 1995 .

[25]  Y. Ohta Caledonian and precambrian history in Svalbard: a review, and an implication of escape tectonics , 1994 .

[26]  G. Manby,et al.  The origin of the West Spitsbergen Fold Belt from geological constraints and plate kinematics: implications for the Arctic , 1993 .

[27]  N. Lyberis,et al.  The West Spitsbergen Fold Belt: The result of Late Cretaceous-Palaeocene Greenland-Svalbard convergence? , 1993 .

[28]  H. Maher,et al.  Tertiary fold-and-thrust belt of Spitsbergen, Svalbard , 1993 .

[29]  A. Andresen,et al.  Structural development of the Tertiary fold‐and‐thrust belt in east Oscar II Land, Spitsbergen , 1990 .

[30]  H. Dypvik,et al.  Structural development along the Billefjorden Fault Zone in the area between Kjellströmdalen and Adventdalen/Sassendalen, central Spitsbergen , 1990 .

[31]  O. Eldholm,et al.  The Norwegian-Greenland Sea , 1990 .

[32]  D. Gee,et al.  UPb, Sr and Nd evidence for grenvillian and latest proterozoic tectonothermal activity in the spitsbergen caledonides, arctic ocean , 1989 .

[33]  W. Nemec,et al.  Anatomy of Collapsed and Re-established Delta Front in Lower Cretaceous of Eastern Spitsbergen: Gravitational Sliding and Sedimentation Processes , 1988 .

[34]  C. Craddock,et al.  Decoupling as an alternate model for transpression during the initial opening of the Norwegian-Greenland Sea , 1988 .

[35]  O. Salvigsen,et al.  Geological map of Svalbard, 1:100, 000 sheet C8G Billefjorden : Spitsbergen , 1988 .

[36]  S. P. Srivastava,et al.  Plate kinematics of the North Atlantic , 1986 .

[37]  S. P. Srivastava Evolution of the Eurasian Basin and its implications to the motion of Greenland along Nares Strait , 1985 .

[38]  Y. Ohta Geochemistry of Precambrian basic igneous rocks between St. Jonsfjorden and Isfjorden, central western Spitsbergen, Svalbard , 1985 .

[39]  N. Christie‐Blick,et al.  Strike-Slip Deformation, Basin Formation, and Sedimentation , 1985 .

[40]  R. Steel,et al.  The Tertiary Strike-Slip Basins and Orogenic Belt of Spitsbergen , 1985 .

[41]  R. Steel,et al.  Svalbard’s post-Caledonian strata — an atlas of sedimentational patterns and palaeogeographic evolution , 1984 .

[42]  M. Talwani,et al.  Evolution of the Norwegian-Greenland Sea , 1977 .

[43]  J. Lowell Spitsbergen Tertiary Orogenic Belt and the Spitsbergen Fracture Zone , 1972 .

[44]  W. B. Harland Contribution of Spitsbergen to Understanding of Tectonic Evolution of North Atlantic Region: Chapter 58: Arctic Regions , 1969 .

[45]  H. Ahlmann,et al.  Scientific Results of the Swedish-Norwegian Arctic Expedition in the Summer of 1931, Part IV-VIII , 1933 .