Wedge Mechanics: Relation with Subduction Zone Earthquakes and Tsunamis

[1]  Friction of rocks , 1978 .

[2]  D. M. Davis,et al.  Sandbox model simulation of forearc evolution and noncritical wedges , 1996 .

[3]  J. Suppe,et al.  Mechanics of extensional wedges , 1991 .

[4]  Y. Fukao Tsunami earthquakes and subduction processes near deep-sea trenches , 1979 .

[5]  J. Dieterich Modeling of rock friction: 1. Experimental results and constitutive equations , 1979 .

[6]  H. Kanamori Mechanism of tsunami earthquakes , 1972 .

[7]  P. Cobbold,et al.  Thrust wedges and fluid overpressures: Sandbox models involving pore fluids , 2006 .

[8]  Kelin Wang,et al.  Thermal constraints on the zone of major thrust earthquake failure: The Cascadia Subduction Zone , 1993 .

[9]  Nina Kukowski,et al.  The impact of analogue material properties on the geometry, kinematics, and dynamics of convergent sand wedges , 2003 .

[10]  Kelin Wang,et al.  Effects of Frictional Behavior and Geometry of Subduction Fault on Coseismic Seafloor Deformation , 2008 .

[11]  R. Dmowska,et al.  Local Tsunamis and Distributed Slip at the Source , 1999 .

[12]  Takane Hori,et al.  Offshore geodetic data conducive to the estimation of the afterslip distribution following the 2003 Tokachi-oki earthquake , 2006 .

[13]  D. Saffer,et al.  Updip limit of the seismogenic zone beneath the accretionary prism of southwest Japan: An effect of diagenetic to low-grade metamorphic processes and increasing effective stress , 2001 .

[14]  K. Obara,et al.  Dynamic deformation of the accretionary prism excites very low frequency earthquakes , 2006 .

[15]  J. Rice Heating and weakening of faults during earthquake slip , 2006 .

[16]  C. Scholz The Mechanics of Earthquakes and Faulting , 1990 .

[17]  Yehuda Bock,et al.  Frictional Afterslip Following the 2005 Nias-Simeulue Earthquake, Sumatra , 2006, Science.

[18]  K. Sieh,et al.  Deformation and Slip Along the Sunda Megathrust in the Great 2005 Nias-Simeulue Earthquake , 2006, Science.

[19]  T. Dixon,et al.  The Seismogenic Zone of Subduction Thrust Faults , 2007 .

[20]  P. Vrolijk On the mechanical role of smectite in subduction zones , 1990 .

[21]  F. A. Dahlen,et al.  Noncohesive critical Coulomb wedges: An exact solution , 1984 .

[22]  D. Elliott The motion of thrust sheets , 1976 .

[23]  J. Malavieille,et al.  Coulomb theory applied to accretionary and nonaccretionary wedges: Possible causes for tectonic erosion and/or frontal accretion , 1994 .

[24]  Kelin Wang,et al.  Accretionary prisms in subduction earthquake cycles: The theory of dynamic Coulomb wedge , 2006 .

[25]  S. Willett,et al.  Formation of forearc basins and their influence on subduction zone earthquakes , 2006 .

[26]  R. Sibson Thickness of the Seismic Slip Zone , 2003 .

[27]  Chi‐yuen Wang Sediment subduction and frictional sliding in a subduction zone , 1980 .

[28]  Kenji Satake,et al.  Tsunami generation by horizontal displacement of ocean bottom , 1996 .

[29]  J. Suppe,et al.  Origin of convex accretionary wedges: Evidence from Barbados , 1986 .

[30]  P. O. Koons,et al.  Critical wedges in three dimensions: Analytical expressions from Mohr‐Coulomb constrained perturbation analysis , 1998 .

[31]  Sean D. Willett,et al.  Mechanical model for the tectonics of doubly vergent compressional orogens , 1993 .

[32]  Shuichi Kodaira,et al.  Splay Fault Branching Along the Nankai Subduction Zone , 2002, Science.

[33]  A. Kopf,et al.  Compositional and Fluid Pressure Controls on the State of Stress on the Nankai Subduction Thrust , 2003 .

[34]  C. Ranero,et al.  Subduction erosion and basal friction along the sediment-starved convergent margin off Antofagasta, Chile , 2003 .

[35]  J. Suppe,et al.  Mechanics of fold‐and‐thrust belts and accretionary wedges: Cohesive Coulomb Theory , 1984 .

[36]  D. Orange,et al.  The effects of fluid escape on accretionary wedges 1. Variable porosity and wedge convexity , 1992 .

[37]  A. Ruina Slip instability and state variable friction laws , 1983 .

[38]  D. Dewhurst,et al.  Fabric and hydraulic conductivity of sheared clays , 1996 .

[39]  Kelin Wang,et al.  A discrete episode of seismic and aseismic deformation of the Nankai trough subduction zone accretionary prism and incoming Philippine Sea plate , 2006 .

[40]  Kelin Wang,et al.  Mechanics of low‐stress forearcs: Nankai and Cascadia , 1999 .

[41]  R. C. Fletcher Approximate analytical solutions for a cohesive fold-and-thrust wedge: Some results for lateral variation in wedge properties and for finite wedge angle , 1989 .

[42]  N. Kukowski,et al.  Sediment accretion against a buttress beneath the Peruvian continental margin at 12° S as simulated with sandbox modeling , 1994 .

[43]  K. Masuda,et al.  Effects of clay content on the frictional strength and fluid transport property of faults , 2007 .

[44]  F. Dahlen,et al.  Constraints on friction and stress in the Taiwan fold-and-thrust belt from heat flow and geochronology , 1990 .

[45]  F. A. Dahlen,et al.  CRITICAL TAPER MODEL OF FOLD-AND-THRUST BELTS AND ACCRETIONARY WEDGES , 1990 .

[46]  William M. Chapple,et al.  Mechanics of thin-skinned fold-and-thrust belts , 1978 .