Ideal minimal residual-based proper generalized decomposition for non-symmetric multi-field models – Application to transient elastodynamics in space-time domain

Abstract It is now well established that separated representations built with the help of proper generalized decomposition (PGD) can drastically reduce computational costs associated with solution of a wide variety of problems. However, it is still an open question to know if separated representations can be efficiently used to approximate solutions of hyperbolic evolution problems in space-time domain. In this paper, we numerically address this issue and concentrate on transient elastodynamic models. For such models, the operator associated with the space-time problem is non-symmetric and low-rank approximations are classically computed by minimizing the space-time residual in a natural L 2 sense, yet leading to non optimal approximations in usual solution norms. Therefore, a new algorithm has been recently introduced by one of the authors and allows to find a quasi-optimal low-rank approximation a priori with respect to a target norm. We presently extend this new algorithm to multi-field models. The proposed algorithm is applied to elastodynamics formulated over space-time domain with the Time Discontinuous Galerkin method in displacement and velocity. Numerical examples demonstrate convergence of the proposed algorithm and comparisons are made with classical a posteriori and a priori approaches.

[1]  F. Chinesta,et al.  A Short Review in Model Order Reduction Based on Proper Generalized Decomposition , 2018 .

[2]  Hans De Sterck,et al.  An Adaptive Algebraic Multigrid Algorithm for Low-Rank Canonical Tensor Decomposition , 2013, SIAM J. Sci. Comput..

[3]  Francisco Chinesta,et al.  A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids , 2006 .

[4]  A. Nouy Proper Generalized Decompositions and Separated Representations for the Numerical Solution of High Dimensional Stochastic Problems , 2010 .

[5]  A. Nouy A priori model reduction through Proper Generalized Decomposition for solving time-dependent partial differential equations , 2010 .

[6]  C. Allery,et al.  Proper general decomposition (PGD) for the resolution of Navier-Stokes equations , 2011, J. Comput. Phys..

[7]  A. Nouy A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations , 2007 .

[8]  Gregory M. Hulbert,et al.  Computational Structural Dynamics , 2004 .

[9]  W. Hackbusch Tensor Spaces and Numerical Tensor Calculus , 2012, Springer Series in Computational Mathematics.

[10]  Zu-Qing Qu,et al.  Model Order Reduction Techniques with Applications in Finite Element Analysis , 2004 .

[11]  David Dureisseix,et al.  A computational strategy for thermo‐poroelastic structures with a time–space interface coupling , 2008 .

[12]  Adrien Leygue,et al.  A First Step Towards the Use of Proper General Decomposition Method for Structural Optimization , 2010 .

[13]  Marie Billaud-Friess,et al.  A tensor approximation method based on ideal minimal residual formulations for the solution of high-dimensional problems ∗ , 2013, 1304.6126.

[14]  Alain Combescure,et al.  Automatic energy conserving space–time refinement for linear dynamic structural problems , 2005 .

[15]  F. Chinesta,et al.  On the Convergence of a Greedy Rank-One Update Algorithm for a Class of Linear Systems , 2010 .

[16]  G. Kerschen,et al.  The Method of Proper Orthogonal Decomposition for Dynamical Characterization and Order Reduction of Mechanical Systems: An Overview , 2005 .

[17]  M. Géradin,et al.  Mechanical Vibrations: Theory and Application to Structural Dynamics , 1994 .

[18]  F. Chinesta,et al.  Advanced simulation of models defined in plate geometries: 3D solutions with 2D computational complexity , 2012 .

[19]  M. Gueguen,et al.  Solution of Strongly Coupled Multiphysics Problems Using Space-Time Separated Representations—Application to Thermoviscoelasticity , 2010 .

[20]  Kenji Kashima,et al.  On Weak Approximation of Stochastic Differential Equations through Hard Bounds by Mathematical Programming , 2013, SIAM J. Sci. Comput..

[21]  Wolfgang Dahmen,et al.  Adaptivity and variational stabilization for convection-diffusion equations∗ , 2012 .

[22]  Edwin Kreuzer,et al.  On the application of Karhunen-Loève transform to transient dynamic systems , 2009 .

[23]  Amine Ammar,et al.  The proper generalized decomposition: a powerful tool for model reduction , 2010 .

[24]  Antonio Falcó,et al.  Proper generalized decomposition for nonlinear convex problems in tensor Banach spaces , 2011, Numerische Mathematik.

[25]  Antonio Falcó,et al.  A Proper Generalized Decomposition for the solution of elliptic problems in abstract form by using a functional Eckart–Young approach , 2011 .

[26]  Pierre Ladevèze,et al.  Proper Generalized Decomposition for Multiscale and Multiphysics Problems , 2010 .

[27]  P. Ladevèze Nonlinear Computational Structural Mechanics: New Approaches and Non-Incremental Methods of Calculation , 1998 .

[28]  David Dureisseix,et al.  A LATIN computational strategy for multiphysics problems: application to poroelasticity , 2003 .

[29]  Francisco Chinesta,et al.  A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids - Part II: Transient simulation using space-time separated representations , 2007 .

[30]  Wolfgang Dahmen,et al.  Adaptive Petrov-Galerkin Methods for First Order Transport Equations , 2011, SIAM J. Numer. Anal..

[31]  P. Holmes,et al.  The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows , 1993 .

[32]  A. Ammar,et al.  Space–time proper generalized decompositions for the resolution of transient elastodynamic models , 2013 .

[33]  Francisco Chinesta,et al.  Alleviating mesh constraints : Model reduction, parallel time integration and high resolution homogenization , 2008 .

[34]  Thomas J. R. Hughes,et al.  Space-time finite element methods for second-order hyperbolic equations , 1990 .

[35]  Nicolás Montés,et al.  Numerical strategies for the Galerkin-proper generalized decomposition method , 2013, Math. Comput. Model..

[36]  Stefan Volkwein,et al.  Galerkin proper orthogonal decomposition methods for parabolic problems , 2001, Numerische Mathematik.

[37]  Martin J. Mohlenkamp,et al.  Algorithms for Numerical Analysis in High Dimensions , 2005, SIAM J. Sci. Comput..

[38]  Luca Boucinha Réduction de modèle a priori par séparation de variables espace-temps : Application en dynamique transitoire , 2013 .

[39]  Anthony Gravouil,et al.  Réduction de modèle a priori par séparation de variables espace-temps pour le problème d'élastodynamique transitoire , 2013 .

[40]  T. Lelièvre,et al.  Greedy algorithms for high-dimensional non-symmetric linear problems , 2012, 1210.6688.

[41]  A. P,et al.  Mechanical Vibrations , 1948, Nature.