Ideal minimal residual-based proper generalized decomposition for non-symmetric multi-field models – Application to transient elastodynamics in space-time domain
暂无分享,去创建一个
Anthony Nouy | Anthony Gravouil | Amine Ammar | A. Ammar | A. Nouy | A. Gravouil | Lucas Boucinha | Lucas Boucinha
[1] F. Chinesta,et al. A Short Review in Model Order Reduction Based on Proper Generalized Decomposition , 2018 .
[2] Hans De Sterck,et al. An Adaptive Algebraic Multigrid Algorithm for Low-Rank Canonical Tensor Decomposition , 2013, SIAM J. Sci. Comput..
[3] Francisco Chinesta,et al. A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids , 2006 .
[4] A. Nouy. Proper Generalized Decompositions and Separated Representations for the Numerical Solution of High Dimensional Stochastic Problems , 2010 .
[5] A. Nouy. A priori model reduction through Proper Generalized Decomposition for solving time-dependent partial differential equations , 2010 .
[6] C. Allery,et al. Proper general decomposition (PGD) for the resolution of Navier-Stokes equations , 2011, J. Comput. Phys..
[7] A. Nouy. A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations , 2007 .
[8] Gregory M. Hulbert,et al. Computational Structural Dynamics , 2004 .
[9] W. Hackbusch. Tensor Spaces and Numerical Tensor Calculus , 2012, Springer Series in Computational Mathematics.
[10] Zu-Qing Qu,et al. Model Order Reduction Techniques with Applications in Finite Element Analysis , 2004 .
[11] David Dureisseix,et al. A computational strategy for thermo‐poroelastic structures with a time–space interface coupling , 2008 .
[12] Adrien Leygue,et al. A First Step Towards the Use of Proper General Decomposition Method for Structural Optimization , 2010 .
[13] Marie Billaud-Friess,et al. A tensor approximation method based on ideal minimal residual formulations for the solution of high-dimensional problems ∗ , 2013, 1304.6126.
[14] Alain Combescure,et al. Automatic energy conserving space–time refinement for linear dynamic structural problems , 2005 .
[15] F. Chinesta,et al. On the Convergence of a Greedy Rank-One Update Algorithm for a Class of Linear Systems , 2010 .
[16] G. Kerschen,et al. The Method of Proper Orthogonal Decomposition for Dynamical Characterization and Order Reduction of Mechanical Systems: An Overview , 2005 .
[17] M. Géradin,et al. Mechanical Vibrations: Theory and Application to Structural Dynamics , 1994 .
[18] F. Chinesta,et al. Advanced simulation of models defined in plate geometries: 3D solutions with 2D computational complexity , 2012 .
[19] M. Gueguen,et al. Solution of Strongly Coupled Multiphysics Problems Using Space-Time Separated Representations—Application to Thermoviscoelasticity , 2010 .
[20] Kenji Kashima,et al. On Weak Approximation of Stochastic Differential Equations through Hard Bounds by Mathematical Programming , 2013, SIAM J. Sci. Comput..
[21] Wolfgang Dahmen,et al. Adaptivity and variational stabilization for convection-diffusion equations∗ , 2012 .
[22] Edwin Kreuzer,et al. On the application of Karhunen-Loève transform to transient dynamic systems , 2009 .
[23] Amine Ammar,et al. The proper generalized decomposition: a powerful tool for model reduction , 2010 .
[24] Antonio Falcó,et al. Proper generalized decomposition for nonlinear convex problems in tensor Banach spaces , 2011, Numerische Mathematik.
[25] Antonio Falcó,et al. A Proper Generalized Decomposition for the solution of elliptic problems in abstract form by using a functional Eckart–Young approach , 2011 .
[26] Pierre Ladevèze,et al. Proper Generalized Decomposition for Multiscale and Multiphysics Problems , 2010 .
[27] P. Ladevèze. Nonlinear Computational Structural Mechanics: New Approaches and Non-Incremental Methods of Calculation , 1998 .
[28] David Dureisseix,et al. A LATIN computational strategy for multiphysics problems: application to poroelasticity , 2003 .
[29] Francisco Chinesta,et al. A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids - Part II: Transient simulation using space-time separated representations , 2007 .
[30] Wolfgang Dahmen,et al. Adaptive Petrov-Galerkin Methods for First Order Transport Equations , 2011, SIAM J. Numer. Anal..
[31] P. Holmes,et al. The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows , 1993 .
[32] A. Ammar,et al. Space–time proper generalized decompositions for the resolution of transient elastodynamic models , 2013 .
[33] Francisco Chinesta,et al. Alleviating mesh constraints : Model reduction, parallel time integration and high resolution homogenization , 2008 .
[34] Thomas J. R. Hughes,et al. Space-time finite element methods for second-order hyperbolic equations , 1990 .
[35] Nicolás Montés,et al. Numerical strategies for the Galerkin-proper generalized decomposition method , 2013, Math. Comput. Model..
[36] Stefan Volkwein,et al. Galerkin proper orthogonal decomposition methods for parabolic problems , 2001, Numerische Mathematik.
[37] Martin J. Mohlenkamp,et al. Algorithms for Numerical Analysis in High Dimensions , 2005, SIAM J. Sci. Comput..
[38] Luca Boucinha. Réduction de modèle a priori par séparation de variables espace-temps : Application en dynamique transitoire , 2013 .
[39] Anthony Gravouil,et al. Réduction de modèle a priori par séparation de variables espace-temps pour le problème d'élastodynamique transitoire , 2013 .
[40] T. Lelièvre,et al. Greedy algorithms for high-dimensional non-symmetric linear problems , 2012, 1210.6688.
[41] A. P,et al. Mechanical Vibrations , 1948, Nature.