A Combination of Variational and Penalty Methods for Solving a Class of Fractional Optimal Control Problems

This paper develops an approximate method, based on the combination of epsilon penalty and variational methods, for solving a class of multidimensional fractional optimal control problems. The fractional derivative is in the Caputo sense. In the presented method, utilizing the epsilon method, the given optimal control problem transforms into an unconstrained optimization problem; then, the equivalent variational equality is derived for the given unconstrained problem. The variational equality is approximately solved by applying a spectral method.

[1]  Tian Liang Guo,et al.  The Necessary Conditions of Fractional Optimal Control in the Sense of Caputo , 2012, Journal of Optimization Theory and Applications.

[2]  P. A. FroCK Epsilon-Ritz Method for Solving Optimal Control Problems : Useful Parallel Solution Method , 2022 .

[3]  O. Agrawal A Quadratic Numerical Scheme for Fractional Optimal Control Problems , 2008 .

[4]  Dumitru Baleanu,et al.  A Central Difference Numerical Scheme for Fractional Optimal Control Problems , 2008, 0811.4368.

[5]  Eberhard Zeidler,et al.  Applied Functional Analysis: Applications to Mathematical Physics , 1995 .

[6]  Om P. Agrawal,et al.  A Formulation and Numerical Scheme for Fractional Optimal Control Problems , 2008 .

[7]  Delfim F. M. Torres,et al.  A discrete method to solve fractional optimal control problems , 2014, 1403.5060.

[8]  H. Srivastava,et al.  THEORY AND APPLICATIONS OF FRACTIONAL DIFFERENTIAL EQUATIONS. NORTH-HOLLAND MATHEMATICS STUDIES , 2006 .

[9]  Mehdi Dehghan,et al.  A numerical technique for solving fractional optimal control problems , 2011, Comput. Math. Appl..

[10]  Delfim F. M. Torres,et al.  Fractional order optimal control problems with free terminal time , 2013, 1302.1717.

[11]  Maïtine Bergounioux,et al.  Mathematical Analysis of a Inf-Convolution Model for Image Processing , 2016, J. Optim. Theory Appl..

[12]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[13]  Ali Lotfi,et al.  Epsilon-Ritz Method for Solving a Class of Fractional Constrained Optimization Problems , 2014, J. Optim. Theory Appl..

[14]  Rafał Kamocki Necessary and sufficient optimality conditions for fractional nonhomogeneous Roesser model , 2016 .

[15]  A. V. Balakrishnan,et al.  On a new computing technique in optimal control theory and the maximum principle. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Ali Lotfi,et al.  A Generalization of Ritz-Variational Method for Solving a Class of Fractional Optimization Problems , 2017, J. Optim. Theory Appl..

[17]  P. A. Frick,et al.  An integral formulation of the ɛ-problem and a new computational approach to control function optimization , 1974 .

[18]  Mehdi Dehghan,et al.  Numerical solution of a class of fractional optimal control problems via the Legendre orthonormal basis combined with the operational matrix and the Gauss quadrature rule , 2013, J. Comput. Appl. Math..