Network Coding Protocols for Smart Grid Communications

We propose a robust network coding protocol for enhancing the reliability and speed of data gathering in smart grids. At the heart of our protocol lies the idea of tunable sparse network coding, which adopts the transmission of sparsely coded packets at the beginning of the transmission process but then switches to a denser coding structure towards the end. Our systematic mechanism maintains the sparse structure during the recombination of packets at the intermediate nodes. The performance of our protocol is compared by means of simulations of IEEE reference grids against standard master-slave protocols used in real systems. Our results show that network coding achieves 100% reliability, even for hostile network conditions, while gathering data 10 times faster than standard master-slave schemes.

[1]  Mehdi Korki,et al.  A channel model for power line communication in the smart grid , 2011, 2011 IEEE/PES Power Systems Conference and Exposition.

[2]  F.A. Kakar,et al.  Enhanced outdoor-to-indoor coverage estimation in microcells , 2008, 2008 Loughborough Antennas and Propagation Conference.

[3]  L. Keller,et al.  Online Broadcasting with Network Coding , 2008, 2008 Fourth Workshop on Network Coding, Theory and Applications.

[4]  Nada Golmie,et al.  A Methodology to Evaluate Wireless Technologies for the Smart Grid , 2010, 2010 First IEEE International Conference on Smart Grid Communications.

[5]  Jon Feldman,et al.  Growth codes: maximizing sensor network data persistence , 2006, SIGCOMM 2006.

[6]  Milica Stojanovic,et al.  Underwater Acoustic Networks: Channel Models and Network Coding Based Lower Bound to Transmission Power for Multicast , 2008, IEEE Journal on Selected Areas in Communications.

[7]  M. Salazar-Palma,et al.  A survey of various propagation models for mobile communication , 2003 .

[8]  Julian Meng,et al.  Effective Communication Strategies for Noise-Limited Power-Line Channels , 2007, IEEE Transactions on Power Delivery.

[9]  Anna Scaglione,et al.  For the Grid and Through the Grid: The Role of Power Line Communications in the Smart Grid , 2010, Proceedings of the IEEE.

[10]  Jon Crowcroft,et al.  Siphon: overload traffic management using multi-radio virtual sinks in sensor networks , 2005, SenSys '05.

[11]  Christina Fragouli,et al.  Low-complexity energy-efficient broadcasting in wireless ad-hoc networks using network coding , 2005 .

[12]  G. Deconinck,et al.  An evaluation of two-way communication means for advanced metering in Flanders (Belgium) , 2008, 2008 IEEE Instrumentation and Measurement Technology Conference.

[13]  Daniel Enrique Lucani,et al.  Network coding in Smart Grids , 2011, 2011 IEEE International Conference on Smart Grid Communications (SmartGridComm).

[14]  Jörg Widmer,et al.  Network coding: an instant primer , 2006, CCRV.

[15]  Muriel Médard,et al.  XORs in the Air: Practical Wireless Network Coding , 2006, IEEE/ACM Transactions on Networking.

[16]  P. L. So,et al.  Modeling and Performance Analysis of Automatic Meter-Reading Systems Using PLC Under Impulsive Noise Interference , 2010, IEEE Transactions on Power Delivery.

[17]  Gerald Thomas Heydt,et al.  The Next Generation of Power Distribution Systems , 2010, IEEE Transactions on Smart Grid.

[18]  Patrick D. McDaniel,et al.  Security and Privacy Challenges in the Smart Grid , 2009, IEEE Security & Privacy.

[19]  Baochun Li,et al.  How Practical is Network Coding? , 2006, 200614th IEEE International Workshop on Quality of Service.

[20]  W. H. Kersting,et al.  Radial distribution test feeders , 1991, 2001 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.01CH37194).

[21]  Sachin Katti,et al.  Trading structure for randomness in wireless opportunistic routing , 2007, SIGCOMM 2007.

[22]  D. J. Marihart Communications technology guidelines for EMS/SCADA systems , 2001 .

[23]  Rudolf Ahlswede,et al.  Network information flow , 2000, IEEE Trans. Inf. Theory.

[24]  Milica Stojanovic,et al.  Network coding schemes for underwater networks: the benefits of implicit acknowledgement , 2007, Underwater Networks.

[25]  Hang Su,et al.  Network Coding Based QoS-Provisioning MAC for Wireless Smart Metering Networks , 2010, QSHINE.

[26]  Luís Díez del Río,et al.  A channel model proposal for indoor power line communications , 2011, IEEE Communications Magazine.

[27]  Muriel Medard,et al.  Tunable sparse network coding , 2012 .

[28]  Rajeev Motwani,et al.  Randomized algorithms , 1996, CSUR.

[29]  Muriel Médard,et al.  An algebraic approach to network coding , 2003, TNET.

[30]  M. Patzold Mobile radio channel models for present and future wireless communication systems , 2008, 2008 International Conference on Advanced Technologies for Communications.

[31]  E. Gunawan,et al.  Solutions for the "silent node" problem in automatic meter reading system using powerline communications , 2005, 2005 International Power Engineering Conference.

[32]  A. Zaballos,et al.  Survey and Performance Comparison of AMR Over PLC Standards , 2009, IEEE Transactions on Power Delivery.

[33]  E. Gunawan,et al.  Solutions for the “Silent Node” Problem in an Automatic Meter Reading System Using Power-Line Communications , 2008, IEEE Transactions on Power Delivery.

[34]  A. W. Kelley,et al.  State estimation for real-time monitoring of distribution systems , 1994 .

[35]  Hüseyin Arslan,et al.  A Review of Wireless and PLC Propagation Channel Characteristics for Smart Grid Environments , 2011, J. Electr. Comput. Eng..

[36]  Martin Hoch,et al.  Comparison of PLC G3 and PRIME , 2011, 2011 IEEE International Symposium on Power Line Communications and Its Applications.

[37]  K. Jain,et al.  Practical Network Coding , 2003 .

[38]  C. Fragouli,et al.  On the Benefits of Network Coding for Wireless Applications , 2006, 2006 4th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks.

[39]  Hideaki Okamoto,et al.  Outdoor-to-Indoor Propagation Loss Prediction in 800-MHz to 8-GHz Band for an Urban Area , 2009, IEEE Transactions on Vehicular Technology.

[40]  Gerhard P. Hancke,et al.  Opportunities and Challenges of Wireless Sensor Networks in Smart Grid , 2010, IEEE Transactions on Industrial Electronics.

[41]  Georgios Kalogridis,et al.  Smart Grid Privacy via Anonymization of Smart Metering Data , 2010, 2010 First IEEE International Conference on Smart Grid Communications.

[42]  Christian Wietfeld,et al.  Performance analysis of radio propagation models for Smart Grid applications , 2011, 2011 IEEE International Conference on Smart Grid Communications (SmartGridComm).

[43]  Lutz H.-J. Lampe,et al.  Power line communication networks for large-scale control and automation systems , 2010, IEEE Communications Magazine.