Local Computation Algorithms for the Lovász Local Lemma

We consider the task of designing Local Computation Algorithms (LCA) for applications of the Lov\'{a}sz Local Lemma (LLL). LCA is a class of sublinear algorithms proposed by Rubinfeld et al. that have received a lot of attention in recent years. The LLL is an existential, sufficient condition for a collection of sets to have non-empty intersection (in applications, often, each set comprises all objects having a certain property). The ground-breaking algorithm of Moser and Tardos made the LLL fully constructive, following earlier works by Beck and Alon giving algorithms under significantly stronger LLL-like conditions. LCAs under those stronger conditions were given in the paper of Rubinfeld et al. and later work by Alon et al., where it was asked if the Moser-Tardos algorithm can be used to design LCAs under the standard LLL condition. The main contribution of this paper is to answer this question affirmatively. In fact, our techniques yields LCAs for settings beyond the standard LLL condition.

[1]  Aravind Srinivasan Improved algorithmic versions of the Lovász Local Lemma , 2008, SODA '08.

[2]  Noga Alon,et al.  A parallel algorithmic version of the local lemma , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[3]  Aldo Procacci,et al.  An Improvement of the Lovász Local Lemma via Cluster Expansion , 2009, Combinatorics, Probability and Computing.

[4]  Jan Vondrák,et al.  An Algorithmic Proof of the Lovasz Local Lemma via Resampling Oracles , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[5]  Ronitt Rubinfeld,et al.  Fast Local Computation Algorithms , 2011, ICS.

[6]  Sofya Raskhodnikova,et al.  Testing and Reconstruction of Lipschitz Functions with Applications to Data Privacy , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[7]  Yishay Mansour,et al.  A Local Computation Approximation Scheme to Maximum Matching , 2013, APPROX-RANDOM.

[8]  Robin A. Moser A constructive proof of the Lovász local lemma , 2008, STOC '09.

[9]  James B. Shearer,et al.  On a problem of spencer , 1985, Comb..

[10]  Gábor Tardos,et al.  The local lemma is tight for SAT , 2010, SODA '11.

[11]  P. Erdos-L Lovász Problems and Results on 3-chromatic Hypergraphs and Some Related Questions , 2022 .

[12]  Paul Erdös,et al.  Lopsided Lovász Local Lemma and Latin transversals , 1991, Discret. Appl. Math..

[13]  B. Reed Graph Colouring and the Probabilistic Method , 2001 .

[14]  Ronitt Rubinfeld,et al.  A Local Algorithm for Constructing Spanners in Minor-Free Graphs , 2016, APPROX-RANDOM.

[15]  Kyomin Jung,et al.  Lower Bounds for Local Monotonicity Reconstruction from Transitive-Closure Spanners , 2010, APPROX-RANDOM.

[16]  Bernard Chazelle,et al.  Property-Preserving Data Reconstruction , 2004, Algorithmica.

[17]  Avinatan Hassidim,et al.  Local computation mechanism design , 2013, EC.

[18]  Wesley Pegden,et al.  An Extension of the Moser-Tardos Algorithmic Local Lemma , 2011, SIAM J. Discret. Math..

[19]  C.H. Papadimitriou,et al.  On selecting a satisfying truth assignment , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[20]  Ronitt Rubinfeld,et al.  Local Algorithms for Sparse Spanning Graphs , 2014, APPROX-RANDOM.

[21]  Fabian Kuhn,et al.  On the complexity of local distributed graph problems , 2016, STOC.

[22]  Yishay Mansour,et al.  Converting Online Algorithms to Local Computation Algorithms , 2012, ICALP.

[23]  Aravind Srinivasan,et al.  A constructive algorithm for the Lovász Local Lemma on permutations , 2014, SODA.

[24]  Bruce A. Reed,et al.  Further algorithmic aspects of the local lemma , 1998, STOC '98.

[25]  Dimitris Achlioptas,et al.  Random Walks That Find Perfect Objects and the Lovasz Local Lemma , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[26]  Jukka Suomela,et al.  Survey of local algorithms , 2013, CSUR.

[27]  Fotis Iliopoulos,et al.  Commutative Algorithms Approximate the LLL-distribution , 2017, APPROX-RANDOM.

[28]  Mario Szegedy,et al.  Moser and tardos meet Lovász , 2011, STOC.

[29]  Bruce A. Reed,et al.  A Bound on the Strong Chromatic Index of a Graph, , 1997, J. Comb. Theory B.

[30]  Michael E. Saks,et al.  Local Monotonicity Reconstruction , 2010, SIAM J. Comput..

[31]  Vladimir Kolmogorov,et al.  Commutativity in the Algorithmic Lovász Local Lemma , 2015, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).

[32]  József Beck,et al.  An Algorithmic Approach to the Lovász Local Lemma. I , 1991, Random Struct. Algorithms.

[33]  Dimitris Achlioptas,et al.  Focused Stochastic Local Search and the Lovász Local Lemma , 2015, SODA.

[34]  Omer Reingold,et al.  New techniques and tighter bounds for local computation algorithms , 2014, J. Comput. Syst. Sci..

[35]  Shubhangi Saraf,et al.  Locally Decodable Codes , 2016, Encyclopedia of Algorithms.

[36]  Noga Alon,et al.  Space-efficient local computation algorithms , 2011, SODA.

[37]  Gábor Tardos,et al.  A constructive proof of the general lovász local lemma , 2009, JACM.

[38]  Alistair Sinclair,et al.  A New Perspective on Stochastic Local Search and the Lovasz Local Lemma , 2018, ArXiv.

[39]  Christian Scheideler,et al.  Coloring non-uniform hypergraphs: a new algorithmic approach to the general Lovász local lemma , 2000, SODA '00.

[40]  Manuel Blum,et al.  Self-testing/correcting with applications to numerical problems , 1990, STOC '90.