暂无分享,去创建一个
[1] Aravind Srinivasan. Improved algorithmic versions of the Lovász Local Lemma , 2008, SODA '08.
[2] Noga Alon,et al. A parallel algorithmic version of the local lemma , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.
[3] Aldo Procacci,et al. An Improvement of the Lovász Local Lemma via Cluster Expansion , 2009, Combinatorics, Probability and Computing.
[4] Jan Vondrák,et al. An Algorithmic Proof of the Lovasz Local Lemma via Resampling Oracles , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.
[5] Ronitt Rubinfeld,et al. Fast Local Computation Algorithms , 2011, ICS.
[6] Sofya Raskhodnikova,et al. Testing and Reconstruction of Lipschitz Functions with Applications to Data Privacy , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.
[7] Yishay Mansour,et al. A Local Computation Approximation Scheme to Maximum Matching , 2013, APPROX-RANDOM.
[8] Robin A. Moser. A constructive proof of the Lovász local lemma , 2008, STOC '09.
[9] James B. Shearer,et al. On a problem of spencer , 1985, Comb..
[10] Gábor Tardos,et al. The local lemma is tight for SAT , 2010, SODA '11.
[11] P. Erdos-L Lovász. Problems and Results on 3-chromatic Hypergraphs and Some Related Questions , 2022 .
[12] Paul Erdös,et al. Lopsided Lovász Local Lemma and Latin transversals , 1991, Discret. Appl. Math..
[13] B. Reed. Graph Colouring and the Probabilistic Method , 2001 .
[14] Ronitt Rubinfeld,et al. A Local Algorithm for Constructing Spanners in Minor-Free Graphs , 2016, APPROX-RANDOM.
[15] Kyomin Jung,et al. Lower Bounds for Local Monotonicity Reconstruction from Transitive-Closure Spanners , 2010, APPROX-RANDOM.
[16] Bernard Chazelle,et al. Property-Preserving Data Reconstruction , 2004, Algorithmica.
[17] Avinatan Hassidim,et al. Local computation mechanism design , 2013, EC.
[18] Wesley Pegden,et al. An Extension of the Moser-Tardos Algorithmic Local Lemma , 2011, SIAM J. Discret. Math..
[19] C.H. Papadimitriou,et al. On selecting a satisfying truth assignment , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.
[20] Ronitt Rubinfeld,et al. Local Algorithms for Sparse Spanning Graphs , 2014, APPROX-RANDOM.
[21] Fabian Kuhn,et al. On the complexity of local distributed graph problems , 2016, STOC.
[22] Yishay Mansour,et al. Converting Online Algorithms to Local Computation Algorithms , 2012, ICALP.
[23] Aravind Srinivasan,et al. A constructive algorithm for the Lovász Local Lemma on permutations , 2014, SODA.
[24] Bruce A. Reed,et al. Further algorithmic aspects of the local lemma , 1998, STOC '98.
[25] Dimitris Achlioptas,et al. Random Walks That Find Perfect Objects and the Lovasz Local Lemma , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.
[26] Jukka Suomela,et al. Survey of local algorithms , 2013, CSUR.
[27] Fotis Iliopoulos,et al. Commutative Algorithms Approximate the LLL-distribution , 2017, APPROX-RANDOM.
[28] Mario Szegedy,et al. Moser and tardos meet Lovász , 2011, STOC.
[29] Bruce A. Reed,et al. A Bound on the Strong Chromatic Index of a Graph, , 1997, J. Comb. Theory B.
[30] Michael E. Saks,et al. Local Monotonicity Reconstruction , 2010, SIAM J. Comput..
[31] Vladimir Kolmogorov,et al. Commutativity in the Algorithmic Lovász Local Lemma , 2015, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).
[32] József Beck,et al. An Algorithmic Approach to the Lovász Local Lemma. I , 1991, Random Struct. Algorithms.
[33] Dimitris Achlioptas,et al. Focused Stochastic Local Search and the Lovász Local Lemma , 2015, SODA.
[34] Omer Reingold,et al. New techniques and tighter bounds for local computation algorithms , 2014, J. Comput. Syst. Sci..
[35] Shubhangi Saraf,et al. Locally Decodable Codes , 2016, Encyclopedia of Algorithms.
[36] Noga Alon,et al. Space-efficient local computation algorithms , 2011, SODA.
[37] Gábor Tardos,et al. A constructive proof of the general lovász local lemma , 2009, JACM.
[38] Alistair Sinclair,et al. A New Perspective on Stochastic Local Search and the Lovasz Local Lemma , 2018, ArXiv.
[39] Christian Scheideler,et al. Coloring non-uniform hypergraphs: a new algorithmic approach to the general Lovász local lemma , 2000, SODA '00.
[40] Manuel Blum,et al. Self-testing/correcting with applications to numerical problems , 1990, STOC '90.