Super stretchable hexagonal boron nitride Kirigami

Abstract Kirigami, the ancient Japanese art of cutting and folding paper at the macroscale, has been recently applied to produce nanostructures with unusual deformation mechanisms. In this work we analyse the mechanical properties and deformation mechanisms leading to remarkable stretching and bilinear stiffness in armchair and zigzag hexagonal boron nitride (h-BN) Kirigami nanosheets using classical molecular dynamics simulations. We identify three geometric parameters that govern the mechanics and ductility of Kirigami h-BN. Enhancements in tensile strains up to 3–5 times higher than those of pristine h-BN can be obtained. The variations of stiffness, ultimate strength and strain with the parameters defining the Kirigami defect patterns can be used to tune the mechanical properties of h-BN and other nano 2D structures, potentially expanding their applications in bio-compatible strain-engineered nanodevices and nanoelectronics.

[1]  Dmitri Golberg,et al.  Boron nitride nanotubes and nanosheets. , 2010, ACS nano.

[2]  S. Ebrahimi-Nejad,et al.  Compressive buckling of open-ended boron nitride nanotubes in hydrogen storage applications , 2013 .

[3]  Soo Doo Chae,et al.  Transistors with chemically synthesized layered semiconductor WS2 exhibiting 105 room temperature modulation and ambipolar behavior , 2012, 1204.0474.

[4]  Hai-jun Shen Thermal-conductivity and tensile-properties of BN, SiC and Ge nanotubes , 2009 .

[5]  A. Fasolino,et al.  Structure, stability and defects of single layer hexagonal BN in comparison to graphene , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[6]  K. Albe,et al.  Computer simulation and boron nitride , 1997 .

[7]  A. Rubio,et al.  Elastic properties of single-wall nanotubes , 1999 .

[8]  Ju Li,et al.  AtomEye: an efficient atomistic configuration viewer , 2003 .

[9]  S. Ebrahimi-Nejad,et al.  Effects of structural defects on the compressive buckling of boron nitride nanotubes , 2013 .

[10]  J. Tersoff,et al.  Empirical interatomic potential for carbon, with application to amorphous carbon. , 1988, Physical review letters.

[11]  Y. Huang,et al.  Continuum modeling of boron nitride nanotubes , 2008, Nanotechnology.

[12]  C. Zhi,et al.  Thickness-dependent bending modulus of hexagonal boron nitride nanosheets , 2009, Nanotechnology.

[13]  C. Zhi,et al.  Large‐Scale Fabrication of Boron Nitride Nanosheets and Their Utilization in Polymeric Composites with Improved Thermal and Mechanical Properties , 2009 .

[14]  M. Ruzzene,et al.  Graded conventional-auxetic Kirigami sandwich structures: Flatwise compression and edgewise loading , 2014 .

[15]  F. Liu,et al.  Strain engineering of graphene: a review. , 2016, Nanoscale.

[16]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[17]  C. Fisher,et al.  Tersoff Potential Parameters for Simulating Cubic Boron Carbonitrides , 2000 .

[18]  Samantha P. Roberts,et al.  Graphene kirigami , 2015, Nature.

[19]  Takashi Taniguchi,et al.  Elasticity of hexagonal boron nitride: Inelastic x-ray scattering measurements , 2006 .

[20]  R. Kumar,et al.  Atomistic modeling of BN nanofillers for mechanical and thermal properties: a review. , 2016, Nanoscale.

[21]  Yaping Zhao,et al.  Preparation of Two Dimensional Atomic Crystals BN, WS2, and MoS2 by Supercritical CO2 Assisted with Ultrasound , 2013 .

[22]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[23]  S. Adhikari,et al.  Effective mechanical properties of hexagonal boron nitride nanosheets , 2011, Nanotechnology.

[24]  W. C. Swope,et al.  A computer simulation method for the calculation of equilibrium constants for the formation of physi , 1981 .

[25]  K. Albe,et al.  Modelling of boron nitride: Atomic scale simulations on thin film growth , 1998 .

[26]  Taketoshi Nojima,et al.  Development of Newly Designed Ultra-Light Core Structures , 2006 .

[27]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[28]  J. Tersoff,et al.  Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. , 1989, Physical review. B, Condensed matter.

[29]  A. Gu,et al.  High‐performance hexagonal boron nitride/bismaleimide composites with high thermal conductivity, low coefficient of thermal expansion, and low dielectric loss , 2012 .

[30]  N. Shahtahmassebi,et al.  First-principles calculations of the Young's modulus of double wall boron-nitride nanotubes , 2013 .

[31]  Harold S. Park,et al.  Highly stretchable MoS2 kirigami. , 2015, Nanoscale.

[32]  G. Scuseria,et al.  Thermodynamics of yield in boron nitride nanotubes , 2003 .

[33]  Fabrizio Scarpa,et al.  A Cellular Kirigami Morphing Wingbox Concept , 2011 .

[34]  A. Kinaci,et al.  Characterization of thermal transport in low-dimensional boron nitride nanostructures , 2011 .

[35]  Nobuko Ohba,et al.  First-principles study on structural, dielectric, and dynamical properties for three BN polytypes , 2001 .

[36]  B. Bouhafs,et al.  Molecular-dynamics simulation of structural and thermodynamic properties of boron nitride , 1998 .

[37]  R. Ansari,et al.  Mechanical properties of multilayer boron nitride with different stacking orders , 2013 .

[38]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[40]  Chang Yi Kong,et al.  Hexagonal Boron Nitride Nanomaterials: Advances Towards Bioapplications , 2012 .

[41]  C N R Rao,et al.  Graphene analogues of BN: novel synthesis and properties. , 2010, ACS nano.

[42]  Wanlin Guo,et al.  "White graphenes": boron nitride nanoribbons via boron nitride nanotube unwrapping. , 2010, Nano letters.

[43]  Stability and electronic properties of small BN nanotubes , 2008, 0807.0884.

[44]  Aidan P Thompson,et al.  General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions. , 2009, The Journal of chemical physics.

[45]  D. Late,et al.  MoS2 and WS2 analogues of graphene. , 2010, Angewandte Chemie.

[46]  Steven G. Louie,et al.  Stability and Band Gap Constancy of Boron Nitride Nanotubes , 1994 .

[47]  Y. Iwamoto,et al.  Molecular Dynamics Study of Atomic Structure and Diffusion Behavior in Amorphous Silicon Nitride Containing Boron , 2004 .

[48]  Alex Zettl,et al.  Measurement of the Elastic Modulus of a Multi-Wall Boron Nitride Nanotube , 1998 .

[49]  Chengyuan Wang,et al.  Effects of temperature and strain rate on the mechanical properties of hexagonal boron nitride nanosheets , 2014 .

[50]  B. Mazzolai,et al.  Boron nitride nanotubes: biocompatibility and potential spill-over in nanomedicine. , 2013, Small.

[51]  Jin Zou,et al.  Boron nitride nanotubes: Pronounced resistance to oxidation , 2004 .

[52]  Y. Rémond,et al.  Investigation of tensile response and thermal conductivity of boron-nitride nanosheets using molecular dynamics simulations , 2012 .

[53]  Y. Bando,et al.  Tensile Tests on Individual Multi‐Walled Boron Nitride Nanotubes , 2010, Advanced materials.

[54]  E. Oh Elastic properties of boron-nitride nanotubes through the continuum lattice approach , 2010 .

[55]  Shijun Zhao,et al.  Mechanical properties of hybrid graphene and hexagonal boron nitride sheets as revealed by molecular dynamic simulations , 2013 .

[56]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[57]  Minh-Quy Le Atomistic Study on the Tensile Properties of Hexagonal AlN, BN, GaN, InN and SiC Sheets , 2014 .

[58]  S. Nosé A molecular dynamics method for simulations in the canonical ensemble , 1984 .

[59]  C. Zhi,et al.  Low-dimensional boron nitride nanomaterials , 2012 .

[60]  Chao Feng,et al.  Molecular dynamics simulation of nano-indentation of (111) cubic boron nitride with optimized Tersoff potential , 2016 .

[61]  K. Dharamvir,et al.  Elastic moduli of a boron nitride nanotube , 2007 .

[62]  J. Tersoff,et al.  New empirical approach for the structure and energy of covalent systems. , 1988, Physical review. B, Condensed matter.

[63]  Chang Liu,et al.  Mechanical properties of bamboo-like boron nitride nanotubes by in situ TEM and MD simulations: strengthening effect of interlocked joint interfaces. , 2011, ACS nano.

[64]  L. Zhenhuan,et al.  The defect-induced fracture behaviors of hexagonal boron-nitride monolayer nanosheets under uniaxial tension , 2015 .

[65]  David K. Campbell,et al.  Atomistic simulations of tension-induced large deformation and stretchability in graphene kirigami , 2014 .

[66]  Zhi Xu,et al.  Young modulus, mechanical and electrical properties of isolated individual and bundled single-walled boron nitride nanotubes , 2011, Nanotechnology.