21 cm cosmology in the 21 st century

Imaging the Universe during the first hundreds of millions of years remains one of the exciting challenges facing modern cosmology. Observations of the redshifted 21 cm line of atomic hydrogen offer the potential of opening a new window into this epoch. This will transform our understanding of the formation of the first stars and galaxies and of the thermal history of the Universe. A new generation of radio telescopes is being constructed for this purpose with the first results starting to trickle in. In this review, we detail the physics that governs the 21 cm signal and describe what might be learnt from upcoming observations. We also generalize our discussion to intensity mapping of other atomic and molecular lines. (Some figures may appear in colour only in the online journal) This article was invited by K Kirby.

[1]  R. Barkana,et al.  An Analytical Approach to Inhomogeneous Structure Formation , 2002, astro-ph/0205276.

[2]  W. Brandt,et al.  A CHANDRA PERSPECTIVE ON GALAXY-WIDE X-RAY BINARY EMISSION AND ITS CORRELATION WITH STAR FORMATION RATE AND STELLAR MASS: NEW RESULTS FROM LUMINOUS INFRARED GALAXIES , 2010, 1009.3943.

[3]  A. Meiksin The micro‐structure of the intergalactic medium – I. The 21 cm signature from dynamical minihaloes , 2011, 1102.1362.

[4]  Denis Foo Kune,et al.  Starburst99: Synthesis Models for Galaxies with Active Star Formation , 1999, astro-ph/9902334.

[5]  K. Ioka,et al.  Radio Afterglows of Gamma-Ray Bursts and Hypernovae at High Redshift and Their Potential for 21 Centimeter Absorption Studies , 2004, astro-ph/0408487.

[6]  H. Trac,et al.  Computer Simulations of Cosmic Reionization , 2009, 0906.4348.

[7]  J. Ostriker,et al.  X-ray pre-ionization powered by accretion on the first black holes – I. A model for the WMAP polarization measurement , 2003, astro-ph/0311003.

[8]  J. Silk,et al.  Signatures of clumpy dark matter in the global 21 cm background signal , 2008, 0808.0881.

[9]  R. Cen,et al.  21cmfast: a fast, seminumerical simulation of the high‐redshift 21‐cm signal , 2010, 1003.3878.

[10]  Max Tegmark,et al.  21 cm Tomography with Foregrounds , 2006 .

[11]  L. Koopmans,et al.  The impact of primordial supersonic flows on early structure formation, reionization and the lowest-mass dwarf galaxies , 2010, 1011.4006.

[12]  Kevin Bandura,et al.  An intensity map of hydrogen 21-cm emission at redshift z ≈ 0.8 , 2010, Nature.

[13]  A. Loeb,et al.  Inflation and the scale dependent spectral index: prospects and strategies , 2010, 1007.3748.

[14]  Christopher Hirata,et al.  Relative velocity of dark matter and baryonic fluids and the formation of the first structures , 2010, 1005.2416.

[15]  Sara Seager,et al.  A New Calculation of the Recombination Epoch , 1999 .

[16]  D. A. Verner,et al.  Atomic data for astrophysics. II. New analytic fits for photoionization cross sections of atoms and ions , 1996 .

[17]  J. Wyithe,et al.  Detecting the redshifted 21cm forest during reionization , 2011, 1101.5431.

[18]  Matias Zaldarriaga,et al.  Measuring the small-scale power spectrum of cosmic density fluctuations through 21 cm tomography prior to the epoch of structure formation. , 2003, Physical review letters.

[19]  Abraham Loeb,et al.  In the Beginning: The First Sources of Light and the Reionization of the Universe , 2000 .

[20]  Richard G. McMahon,et al.  A luminous quasar at a redshift of z = 7.085 , 2011, Nature.

[21]  Xuelei Chen,et al.  The earliest galaxies seen in 21 cm line absorption , 2010, 1009.1149.

[22]  S. Rawlings,et al.  A HEURISTIC PREDICTION OF THE COSMIC EVOLUTION OF THE CO-LUMINOSITY FUNCTIONS , 2009, 0907.3091.

[23]  C. L. Carilli,et al.  INTENSITY MAPPING OF MOLECULAR GAS DURING COSMIC REIONIZATION , 2011, 1102.0745.

[24]  A Limit from the X-Ray Background on the Contribution of Quasars to Reionization , 2004, astro-ph/0403078.

[25]  J. Shull Heating and ionization by X-ray photoelectrons , 1979 .

[26]  Hy Trac,et al.  Demonstrating the feasibility of line intensity mapping using mock data of galaxy clustering from simulations , 2011, 1104.4809.

[27]  J. Schaye,et al.  Keeping the Universe ionized: photoheating and the clumping factor of the high-redshift intergalactic medium , 2008, 0807.3963.

[28]  R. Klessen,et al.  GRAVITATIONAL FRAGMENTATION IN TURBULENT PRIMORDIAL GAS AND THE INITIAL MASS FUNCTION OF POPULATION III STARS , 2010, 1006.1508.

[29]  J. Ostriker,et al.  Effect of Primordial Black Holes on the Cosmic Microwave Background and Cosmological Parameter Estimates , 2007, 0709.0524.

[30]  S. Furlanetto The 21-cm forest , 2006 .

[31]  Non‐linear clustering during the cosmic Dark Ages and its effect on the 21‐cm background from minihaloes , 2002, astro-ph/0209216.

[32]  U. Seljak,et al.  Large-scale BAO signatures of the smallest galaxies , 2010, 1009.4704.

[33]  P. Noterdaeme,et al.  Detection of 21-cm, H2 and deuterium absorption at z > 3 along the line of sight to J1337+3152* , 2010, 1002.4620.

[34]  B. Wandelt,et al.  Cosmic (Super)String Constraints from 21 cm Radiation. , 2008, Physical review letters.

[35]  B. Ciardi,et al.  Lyα versus X-ray heating in the high-z intergalactic medium , 2010 .

[36]  J. Pritchard,et al.  Descending from on high: Lyman-series cascades and spin-kinetic temperature coupling in the 21-cm line , 2005, astro-ph/0508381.

[37]  A. Sternberg,et al.  Molecular Clouds at the Reionization Epoch , 2011 .

[38]  J. Pritchard,et al.  Galaxy surveys, inhomogeneous re-ionization and dark energy , 2006, astro-ph/0604358.

[39]  Y. Revaz,et al.  Reionization by UV or X-ray sources , 2010, 1003.0834.

[40]  Ilian T. Iliev,et al.  On the Direct Detectability of the Cosmic Dark Ages: 21 Centimeter Emission from Minihalos , 2002 .

[41]  B. Zygelman Hyperfine Level-changing Collisions of Hydrogen Atoms and Tomography of the Dark Age Universe , 2005 .

[42]  P. Shapiro,et al.  Recognizing the First Radiation Sources through Their 21 cm Signature , 2006, astro-ph/0605511.

[43]  Ue-Li Pen,et al.  Baryon acoustic oscillation intensity mapping of dark energy. , 2007, Physical review letters.

[44]  Abraham Loeb,et al.  Constraining the unexplored period between the dark ages and reionization with observations of the global 21 cm signal , 2010, 1005.4057.

[45]  21-cm fluctuations from inhomogeneous X-ray heating before reionization , 2006, astro-ph/0607234.

[46]  J. Shull,et al.  X-ray secondary heating and ionization in quasar emission-line clouds , 1985 .

[47]  Asantha Cooray,et al.  PROBING REIONIZATION WITH INTENSITY MAPPING OF MOLECULAR AND FINE-STRUCTURE LINES , 2011, 1101.2892.

[48]  A. C. Allison,et al.  SPIN CHANGE IN COLLISIONS OF HYDROGEN ATOMS. , 1969 .

[49]  Berkeley,et al.  Detecting the Rise and Fall of 21 cm Fluctuations with the Murchison Widefield Array , 2007, 0711.4373.

[50]  D. Schaerer,et al.  THE SPECTRAL EVOLUTION OF THE FIRST GALAXIES. I. JAMES WEBB SPACE TELESCOPE DETECTION LIMITS AND COLOR CRITERIA FOR POPULATION III GALAXIES , 2011, 1105.0921.

[51]  Carlos Hernandez-Monteagudo,et al.  Carbon monoxide line emission as a CMB foreground: tomography of the star-forming universe with different spectral resolutions , 2008, 0805.2174.

[52]  The morphology of H ii regions during reionization , 2006, astro-ph/0610094.

[53]  G. Field The Time Relaxation of a Resonance-Line Profile. , 1959 .

[54]  J. Pritchard,et al.  The scattering of Lyman-series photons in the intergalactic medium , 2006, astro-ph/0605680.

[55]  C. Hirata,et al.  Suppression and spatial variation of early galaxies and minihaloes , 2010, 1012.2574.

[56]  J. Hewitt,et al.  Toward Empirical Constraints on the Global Redshifted 21 cm Brightness Temperature During the Epoch of Reionization , 2007, 0710.2541.

[57]  A. Loeb,et al.  The formation of the first low-mass stars from gas with low carbon and oxygen abundances , 2003, Nature.

[58]  Eli Visbal,et al.  Measuring the 3D clustering of undetected galaxies through cross correlation of their cumulative flux fluctuations from multiple spectral lines , 2010, 1008.3178.

[59]  P. Madau,et al.  accepted for publication in The Astrophysical Journal Letters Preprint typeset using L ATEX style emulateapj v. 6/22/04 THE SPIN TEMPERATURE AND 21CM BRIGHTNESS OF THE INTERGALACTIC MEDIUM IN THE PRE-REIONIZATION ERA , 2005 .

[60]  S. Matarrese,et al.  The Bispectrum of Redshifted 21 Centimeter Fluctuations from the Dark Ages , 2006, astro-ph/0611126.

[61]  Marat Gilfanov,et al.  High mass x-ray binaries as a star formation rate indicator in distant galaxies , 2002 .

[62]  UNUSUALLY LARGE FLUCTUATIONS IN THE STATISTICS OF GALAXY FORMATION AT HIGH REDSHIFT , 2003, astro-ph/0310338.

[63]  Ravi K. Sheth Giuseppe Tormen Large scale bias and the peak background split , 1999 .

[64]  Max Tegmark,et al.  A method for 21 cm power spectrum estimation in the presence of foregrounds , 2011, Physical Review D.

[65]  V. Barger,et al.  Inflationary Potential from 21 cm Tomography and Planck , 2008, 0810.3337.

[66]  G. Holder,et al.  The 21 cm signature of cosmic string wakes , 2010, 1006.2514.

[67]  The first miniquasar , 2005, astro-ph/0506712.

[68]  Wouthuysen-Field coupling strength and application to high-redshift 21-cm radiation , 2005, astro-ph/0507102.

[69]  A. Loeb,et al.  EFFECT OF STREAMING MOTION OF BARYONS RELATIVE TO DARK MATTER ON THE FORMATION OF THE FIRST STARS , 2010, 1011.4512.

[70]  Vanessa Hill,et al.  An extremely primitive star in the Galactic halo , 2011, Nature.

[71]  S. Furlanetto,et al.  Redshifted 21 cm Emission from Minihalos before Reionization , 2006, astro-ph/0604080.

[72]  N. Padmanabhan,et al.  CMB and 21-cm signals for dark matter with a long-lived excited state , 2008, 0805.3531.

[73]  J. Bolton,et al.  Resolving the high redshift Lyα forest in smoothed particle hydrodynamics simulations , 2009, 0906.2861.

[74]  H. Liszt Astronomy & Astrophysics manuscript no. (will be inserted by hand later) The Spin Temperature of Warm Interstellar H I , 2008 .

[75]  Probing the epoch of early baryonic infall through 21-cm fluctuations , 2005, astro-ph/0502083.

[76]  A. Loeb,et al.  The 21-cm power spectrum after reionization , 2008, 0808.2323.

[77]  Steven Furlanetto,et al.  Cosmology at low frequencies: The 21 cm transition and the high-redshift Universe , 2006 .

[78]  Wayne Hu,et al.  Redshift Space 21 cm Power Spectra from Reionization , 2005, astro-ph/0511141.

[79]  D. Eisenstein,et al.  Cosmic Complementarity: Joint Parameter Estimation from Cosmic Microwave Background Experiments and Redshift Surveys , 1998, astro-ph/9807130.

[80]  R. Cen,et al.  Probing the first galaxies with the Square Kilometer Array , 2011 .

[81]  S. Zaroubi,et al.  Fast Large-Scale Reionization Simulations , 2008, 0809.1326.

[82]  A. Loeb,et al.  Evolution of the 21 cm signal throughout cosmic history , 2008, 0802.2102.

[83]  A. Loeb,et al.  The 21 Centimeter Forest: Radio Absorption Spectra as Probes of Minihalos before Reionization , 2002, astro-ph/0206308.

[84]  S. A. Wouthuysen On the excitation mechanism of the 21-cm (radio-frequency) interstellar hydrogen emission line. , 1952 .

[85]  B. Ciardi,et al.  Population III stars and the Long Gamma Ray Burst rate , 2011, 1106.1439.

[86]  E. Switzer,et al.  Redshifted intergalactic He+3 8.7 GHz hyperfine absorption , 2009, 0905.1715.

[87]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[88]  A. Cooray 21-cm background anisotropies can discern primordial non-Gaussianity. , 2006, Physical review letters.

[89]  H I 21 Centimeter Absorption beyond the Epoch of Reionization , 2002, astro-ph/0205169.

[90]  G. Field An Attempt to Observe Neutral Hydrogen Between the Galaxies. , 1959 .

[91]  Matias Zaldarriaga,et al.  Simulations and Analytic Calculations of Bubble Growth during Hydrogen Reionization , 2006, astro-ph/0604177.

[92]  P. Shapiro,et al.  Redshift-space distortion of the 21-cm background from the epoch of reionization – I. Methodology re-examined , 2011, 1104.2094.

[93]  H. Falcke,et al.  Science with a lunar low-frequency array: From the dark ages of the Universe to nearby exoplanets , 2009, 0902.0493.

[94]  Radiative feedback from an early X-ray background , 2002, astro-ph/0205308.

[95]  M. Morales,et al.  Reionization and Cosmology with 21-cm Fluctuations , 2009, 0910.3010.

[96]  Simulating cosmic reionization at large scales – II. The 21-cm emission features and statistical signals , 2006, astro-ph/0603518.

[97]  R. McLure,et al.  THE CANADA–FRANCE HIGH-z QUASAR SURVEY: NINE NEW QUASARS AND THE LUMINOSITY FUNCTION AT REDSHIFT 6 , 2009, 0912.0281.

[98]  A. Morandi,et al.  Studying cosmic reionization with observations of the global 21-cm signal , 2011, 1102.2378.

[99]  Xuelei Chen,et al.  The 21 cm Signature of the First Stars , 2006, astro-ph/0605439.

[100]  H. Trac,et al.  Cosmic Reionization and the 21 cm Signal: Comparison between an Analytical Model and a Simulation , 2007, 0708.2424.

[101]  Garching,et al.  Detection and extraction of signals from the epoch of reionization using higher-order one-point statistics , 2008, 0809.2428.

[102]  R. Barkana On correlated random walks and 21-cm fluctuations during cosmic reionization , 2007, 0704.3534.

[103]  A. Loeb,et al.  Identifying the Reionization Redshift from the Cosmic Star Formation Rate , 2000, astro-ph/0001326.

[104]  Martina M. Friedrich,et al.  Topology and Sizes of HII Regions during Cosmic Reionization , 2010, 1006.2016.

[105]  A. Ferrara,et al.  The energy cascade from warm dark matter decays , 2008, 0803.0370.

[106]  Stuart WyitheAvi Loeb The imprint of cosmic reionization on galaxy clustering , 2007, 0706.3744.

[107]  A. Loeb,et al.  Stellar black holes at the dawn of the universe , 2011, 1102.1891.

[108]  M. Dopita,et al.  Re-ionizing the universe without stars , 2011, 1106.5546.

[109]  J. R. Bond,et al.  Excursion set mass functions for hierarchical Gaussian fluctuations , 1991 .

[110]  D. Hooper,et al.  How dark matter reionized the Universe , 2009, 0904.1210.

[111]  H. Trac,et al.  Comparison of reionization models: radiative transfer simulations and approximate, seminumeric models , 2010, 1003.3455.

[112]  H. Trac,et al.  Radiative Transfer Simulations of Cosmic Reionization. I. Methodology and Initial Results , 2006, astro-ph/0612406.

[113]  Matias Zaldarriaga,et al.  How accurately can 21cm tomography constrain cosmology , 2008, 0802.1710.

[114]  M. Zaldarriaga,et al.  The Growth of H II Regions During Reionization , 2004, astro-ph/0403697.

[115]  Particle decays during the cosmic dark ages , 2003, astro-ph/0310473.

[116]  J. Maldacena Non-Gaussian features of primordial fluctuations in single field inflationary models , 2002, astro-ph/0210603.

[117]  Large-scale structure shocks at low and high redshifts , 2003, astro-ph/0312435.

[118]  E. Pierpaoli,et al.  Constraining massive neutrinos using cosmological 21 cm observations , 2008, 0805.1920.

[119]  Abraham Loeb,et al.  Possibility of precise measurement of the cosmological power spectrum with a dedicated survey of 21 cm emission after reionization. , 2008, Physical review letters.

[120]  A. Loeb,et al.  A Method for Separating the Physics from the Astrophysics of High-Redshift 21 Centimeter Fluctuations , 2004, astro-ph/0409572.

[121]  P. Di Matteo,et al.  The simulated 21 cm signal during the epoch of reionization : full modeling of the Ly-α pumping , 2008, 0808.0925.

[122]  S. Furlanetto,et al.  Secondary ionization and heating by fast electrons , 2009, 0910.4410.

[123]  Growth of Linear Perturbations before the Era of the First Galaxies , 2005, astro-ph/0503196.

[124]  A. Loeb,et al.  The hyperfine transition of 3 He II as a probe of the intergalactic medium , 2009, 0905.1698.

[125]  Martin J. Rees,et al.  Reionization of the Inhomogeneous Universe , 1998, astro-ph/9812306.

[126]  Volker Bromm,et al.  Generic Spectrum and Ionization Efficiency of a Heavy Initial Mass Function for the First Stars , 2001 .

[127]  H. Trac,et al.  THE 21 cm FOREST AS A PROBE OF THE REIONIZATION AND THE TEMPERATURE OF THE INTERGALACTIC MEDIUM , 2009, 0904.4254.

[128]  A. Lewis,et al.  Nonlinear redshift-space power spectra , 2008, 0808.1724.

[129]  Va,et al.  Probing the first stars and black holes in the early Universe with the Dark Ages Radio Explorer (DARE) , 2011, 1106.5194.

[130]  Spin Exchange Rates in Electron-Hydrogen Collisions , 2006, astro-ph/0608067.

[131]  R. Souza,et al.  Population III.1 and III.2 gamma-Ray Bursts: Constraints on the event rate for future radio and X-ray surveys , 2011, 1105.2395.

[132]  The spin‐resolved atomic velocity distribution and 21‐cm line profile of dark‐age gas , 2006, astro-ph/0605071.

[133]  J. Shull,et al.  Accepted for publication in ApJ Preprint typeset using L ATEX style emulateapj v. 14/09/00 HEATING AND IONIZATION OF THE INTERGALACTIC MEDIUM , 2001 .

[134]  G. Richards,et al.  An Observational Determination of the Bolometric Quasar Luminosity Function , 2006, astro-ph/0605678.

[135]  Miguel F. Morales,et al.  Toward Epoch of Reionization Measurements with Wide-Field Radio Observations , 2003 .

[136]  A. Ferrara,et al.  Reionization constraints using principal component analysis , 2010, 1011.2213.

[137]  George B. Field,et al.  Excitation of the Hydrogen 21-CM Line , 1958, Proceedings of the IRE.

[138]  William H. Press,et al.  Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravitational Condensation , 1974 .

[139]  R. Sunyaev,et al.  The collective X‐ray luminosity of HMXB as a SFR indicator , 2010, 1009.4873.

[140]  Stuart Wyithe,et al.  Baryonic acoustic oscillations in 21-cm emission: a probe of dark energy out to high redshifts , 2007, 0709.2955.

[141]  H. Trac,et al.  Imprint of Inhomogeneous Hydrogen Reionization on the Temperature Distribution of the Intergalactic Medium , 2008, 0807.4530.

[142]  Harvard,et al.  Constraints on the redshift evolution of the LX–SFR relation from the cosmic X-ray backgrounds , 2011, 1108.4420.

[143]  U. Pen,et al.  ENHANCED DETECTABILITY OF PRE-REIONIZATION 21 cm STRUCTURE , 2010, 1007.0001.

[144]  R. Klessen,et al.  Modelling CO emission – I. CO as a column density tracer and the X factor in molecular clouds , 2010, 1011.2019.

[145]  Cambridge,et al.  An MCMC approach to extracting the global 21‐cm signal during the cosmic dawn from sky‐averaged radio observations , 2011, 1107.3154.

[146]  Early reionization by miniquasars , 2003, astro-ph/0310223.

[147]  21-cm radiation: a new probe of variation in the fine-structure constant. , 2007, Physical review letters.

[148]  A. Nusser The spin temperature of neutral hydrogen during cosmic pre-reionization , 2004, astro-ph/0409640.

[149]  E. Quataert,et al.  SUBMITTED TO APJ Preprint typeset using L ATEX style emulateapj v. 11/12/01 MODELING THE COUNTS OF FAINT RADIO LOUD QUASARS: CONSTRAINTS ON THE SUPERMASSIVE BLACK HOLE POPULATION AND PREDICTIONS FOR HIGH REDSHIFT , 2004 .

[150]  E. Pierpaoli,et al.  Effects of dark matter decay and annihilation on the high-redshift 21 cm background , 2006, astro-ph/0608385.

[151]  Moscow,et al.  High Mass X-ray Binaries as a Star Formation Rate Indicator in Distant Galaxies , 2002, astro-ph/0205371.

[152]  E. Purcell,et al.  Observation of a Line in the Galactic Radio Spectrum: Radiation from Galactic Hydrogen at 1,420 Mc./sec. , 1951, Nature.

[153]  Zheng Zheng,et al.  Radiative Transfer Effect on Ultraviolet Pumping of the 21 cm Line in the High-Redshift Universe , 2007 .

[154]  A. Loeb,et al.  Fluctuations in 21-cm emission after reionization , 2007, 0708.3392.

[155]  Asantha Cooray,et al.  Cosmological and Astrophysical Parameter Measurements with 21-cm Anisotropies During the Era of Reionization , 2006, astro-ph/0605677.

[156]  Measuring the primordial deuterium abundance during the cosmic dark ages. , 2005, Physical review letters.

[157]  Ž. Ivezić,et al.  The Radio-Loud Fraction of Quasars is a Strong Function of Redshift and Optical Luminosity , 2006, astro-ph/0611453.

[158]  Abraham Loeb,et al.  Detecting the Earliest Galaxies through Two New Sources of 21 Centimeter Fluctuations , 2004 .

[159]  James Aguirre,et al.  INTENSITY MAPPING WITH CARBON MONOXIDE EMISSION LINES AND THE REDSHIFTED 21 cm LINE , 2011, 1104.4800.

[160]  OH S.Peng,et al.  Reionization by Hard Photons. I. X-Rays from the First Star Clusters , 2000, astro-ph/0005262.

[161]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE * OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[162]  F. Kitaura,et al.  Searching for the earliest galaxies in the 21 cm forest , 2010, 1002.4356.

[163]  A. Loeb,et al.  Constraining reionization using 21-cm observations in combination with CMB and Lyα forest data , 2009, 0908.3891.

[164]  A. Rogers,et al.  A lower limit of Δz > 0.06 for the duration of the reionization epoch , 2010, Nature.

[165]  F. Combes,et al.  Lyman-alpha radiative transfer during the epoch of reionization: contribution to 21-cm signal fluctuations , 2007, 0707.2483.

[166]  A. Loeb,et al.  Imprint of Inhomogeneous Reionization on the Power Spectrum of Galaxy Surveys at High Redshifts , 2005, astro-ph/0509784.

[167]  M. Mapelli,et al.  Constraining dark matter through 21-cm observations , 2007, astro-ph/0701301.

[168]  U. Irvine,et al.  Fast large volume simulations of the 21-cm signal from the reionization and pre-reionization epochs , 2009, 0911.2219.

[169]  K. Lee,et al.  THRESHOLD PROBABILITY FUNCTIONS AND THERMAL INHOMOGENEITIES IN THE Lyα FOREST , 2010, 1007.3734.

[170]  D. Kleppner The Atomic Hydrogen Maser , 1960 .

[171]  A. Loeb,et al.  Cosmological constraints from 21cm surveys after reionization , 2008, 0812.0419.

[172]  The global 21-centimeter background from high redshifts , 2006, astro-ph/0604040.

[173]  Spin-exchange rates in electron–hydrogen collisions , 2007, astro-ph/0702487.

[174]  Matias Zaldarriaga,et al.  Cosmological Parameter Estimation Using 21 cm Radiation from the Epoch of Reionization , 2005, astro-ph/0512263.

[175]  G. Rybicki Improved Fokker-Planck Equation for Resonance-Line Scattering , 2006, astro-ph/0603047.

[176]  Douglas P. Finkbeiner,et al.  CMB constraints on WIMP annihilation: Energy absorption during the recombination epoch , 2009, 0906.1197.

[177]  J. Wyithe,et al.  Modification of the 21-cm power spectrum by quasars during the epoch of reionisation , 2009, 0904.3163.

[178]  Heating of the intergalactic medium by primordial miniquasars , 2006, astro-ph/0609151.

[179]  Xuelei Chen,et al.  The Spin-Kinetic Temperature Coupling and the Heating Rate due to Lyα Scattering before Reionization: Predictions for 21 Centimeter Emission and Absorption , 2003, astro-ph/0303395.

[180]  Martin J. Rees,et al.  21 CENTIMETER TOMOGRAPHY OF THE INTERGALACTIC MEDIUM AT HIGH REDSHIFT , 1996 .

[181]  A. Meiksin Detecting the Epoch of First Light in 21-CM Radiation , 2000 .

[182]  J. Weller,et al.  Neutral hydrogen surveys for high-redshift galaxy clusters and protoclusters , 2004, astro-ph/0401340.

[183]  R. Barkana,et al.  Detecting early galaxies through their 21‐cm signature , 2007, 0707.3146.

[184]  J. Pritchard,et al.  Forecasted 21 cm constraints on compensated isocurvature perturbations , 2009, 0907.5400.

[185]  Taxing the rich: Recombinations and bubble growth during reionization , 2005, astro-ph/0505065.

[186]  V. Sobolev The Diffusion of Lα Radiation in Nebulae and Stellar Envelopes. , 1957 .

[187]  M. Kaplinghat,et al.  Primordial non-Gaussianity from the 21 cm power spectrum during the epoch of reionization. , 2011, Physical review letters.

[188]  The 21 cm Background from the Cosmic Dark Ages: Minihalos and the Intergalactic Medium before Reionization , 2005, astro-ph/0512516.