Modeling conformational states of proteins with AlphaFold.

[1]  Brian D. Weitzner,et al.  OpenFold: Retraining AlphaFold2 yields new insights into its learning mechanisms and capacity for generalization , 2023, bioRxiv.

[2]  Q. Cong,et al.  Efficient and accurate prediction of protein structure using RoseTTAFold2 , 2023, bioRxiv.

[3]  P. Tiwary,et al.  AlphaFold2-RAVE: From Sequence to Boltzmann Ranking. , 2023, Journal of chemical theory and computation.

[4]  J. Meiler,et al.  Improving the Modeling of Extracellular Ligand Binding Pockets in RosettaGPCR for Conformational Selection , 2023, International journal of molecular sciences.

[5]  T. Jaakkola,et al.  EigenFold: Generative Protein Structure Prediction with Diffusion Models , 2023, ArXiv.

[6]  O. Brock,et al.  Protein structure prediction with in-cell photo-crosslinking mass spectrometry and deep learning , 2023, Nature Biotechnology.

[7]  Matthew P. Repasky,et al.  Benchmarking Refined and Unrefined AlphaFold2 Structures for Hit Discovery , 2023, J. Chem. Inf. Model..

[8]  B. Wallner,et al.  AFsample: Improving Multimer Prediction with AlphaFold using Aggressive Sampling , 2023, bioRxiv.

[9]  Nathan C Frey,et al.  EquiFold: Protein Structure Prediction with a Novel Coarse-Grained Structure Representation , 2023, bioRxiv.

[10]  J. Meiler,et al.  Targeting in silico GPCR conformations with ultra-large library screening for hit discovery. , 2023, Trends in pharmacological sciences.

[11]  Zeming Lin,et al.  Evolutionary-scale prediction of atomic level protein structure with a language model , 2022, bioRxiv.

[12]  Brian L. Trippe,et al.  Broadly applicable and accurate protein design by integrating structure prediction networks and diffusion generative models , 2022, bioRxiv.

[13]  J. Meiler,et al.  Biasing AlphaFold2 to predict GPCRs and kinases with user-defined functional or structural properties , 2022, bioRxiv.

[14]  D. Haselbach,et al.  Frozen in time: analyzing molecular dynamics with time-resolved cryo-EM. , 2022, Structure.

[15]  David E. Gloriam,et al.  GPCRdb in 2023: state-specific structure models using AlphaFold2 and new ligand resources , 2022, Nucleic Acids Res..

[16]  Renmin Han,et al.  Protein structure prediction in the deep learning era. , 2022, Current opinion in structural biology.

[17]  Lucy J. Colwell,et al.  Prediction of multiple conformational states by combining sequence clustering with AlphaFold2 , 2022, bioRxiv.

[18]  T. Jaakkola,et al.  DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking , 2022, ICLR.

[19]  George M. Church,et al.  Single-sequence protein structure prediction using a language model and deep learning , 2022, Nature Biotechnology.

[20]  M. Heinzinger,et al.  Nearest neighbor search on embeddings rapidly identifies distant protein relations , 2022, bioRxiv.

[21]  Guolin Ke,et al.  Uni-Fold: An Open-Source Platform for Developing Protein Folding Models beyond AlphaFold , 2022, bioRxiv.

[22]  R. Nussinov,et al.  AlphaFold, Artificial Intelligence (AI), and Allostery , 2022, The journal of physical chemistry. B.

[23]  R. Stein,et al.  SPEACH_AF: Sampling protein ensembles and conformational heterogeneity with Alphafold2 , 2022, PLoS Comput. Biol..

[24]  Jian Peng,et al.  High-resolution de novo structure prediction from primary sequence , 2022, bioRxiv.

[25]  Radoslav I. Enchev,et al.  Structural dynamics: review of time-resolved cryo-EM , 2022, Acta crystallographica. Section D, Structural biology.

[26]  S. Ovchinnikov,et al.  State-of-the-art estimation of protein model accuracy using AlphaFold , 2022, bioRxiv.

[27]  Brian L. Trippe,et al.  Diffusion probabilistic modeling of protein backbones in 3D for the motif-scaffolding problem , 2022, ICLR.

[28]  Tudor Achim,et al.  Protein Structure and Sequence Generation with Equivariant Denoising Diffusion Probabilistic Models , 2022, ArXiv.

[29]  W. Choy,et al.  AlphaFold2: A Role for Disordered Protein/Region Prediction? , 2022, International journal of molecular sciences.

[30]  A. Schlessinger,et al.  Exploring the conformational diversity of proteins , 2022, eLife.

[31]  J. Meiler,et al.  Integrated AlphaFold2 and DEER investigation of the conformational dynamics of a pH-dependent APC antiporter , 2022, bioRxiv.

[32]  Diego J. Zea,et al.  Impact of protein conformational diversity on AlphaFold predictions , 2022, Bioinform..

[33]  J. Meiler,et al.  Sampling alternative conformational states of transporters and receptors with AlphaFold2 , 2022, eLife.

[34]  Yang You,et al.  FastFold: Reducing AlphaFold Training Time from 11 Days to 67 Hours , 2022, ArXiv.

[35]  J. Meiler,et al.  Modeling of protein conformational changes with Rosetta guided by limited experimental data , 2022, bioRxiv.

[36]  G. Buel,et al.  Can AlphaFold2 predict the impact of missense mutations on structure? , 2022, Nature Structural & Molecular Biology.

[37]  M. Feig,et al.  Multi‐state modeling of G‐protein coupled receptors at experimental accuracy , 2021, bioRxiv.

[38]  James Lin,et al.  ParaFold: Paralleling AlphaFold for Large-Scale Predictions , 2021, HPC Asia Workshops.

[39]  Oriol Vinyals,et al.  Applying and improving AlphaFold at CASP14 , 2021, Proteins.

[40]  D. Ivankov,et al.  Using AlphaFold to predict the impact of single mutations on protein stability and function , 2021, bioRxiv.

[41]  R. Neutze,et al.  Advances and challenges in time-resolved macromolecular crystallography , 2021, Science.

[42]  R. Pappu,et al.  AlphaFold and implications for intrinsically disordered proteins. , 2021, Journal of molecular biology.

[43]  S. Ovchinnikov,et al.  ColabFold: making protein folding accessible to all , 2022, Nature Methods.

[44]  Derek J. Wilson,et al.  Subsecond Time-Resolved Mass Spectrometry in Dynamic Structural Biology. , 2021, Chemical reviews.

[45]  Gyu Rie Lee,et al.  Accurate prediction of protein structures and interactions using a 3-track neural network , 2021, Science.

[46]  Oriol Vinyals,et al.  Highly accurate protein structure prediction with AlphaFold , 2021, Nature.

[47]  Mohammed AlQuraishi,et al.  Machine learning in protein structure prediction. , 2021, Current opinion in chemical biology.

[48]  Antonio Rosato,et al.  Insights into the Dynamics of the Human Zinc Transporter ZnT8 by MD Simulations , 2021, J. Chem. Inf. Model..

[49]  Tom Sercu,et al.  Transformer protein language models are unsupervised structure learners , 2020, bioRxiv.

[50]  György M. Keserü,et al.  GPCRdb in 2021: integrating GPCR sequence, structure and function , 2020, Nucleic Acids Res..

[51]  Chris de Graaf,et al.  KLIFS: an overhaul after the first 5 years of supporting kinase research , 2020, Nucleic Acids Res..

[52]  Sanket A. Deshmukh,et al.  A review of advancements in coarse-grained molecular dynamics simulations , 2020, Molecular Simulation.

[53]  Jane R. Allison,et al.  Computational methods for exploring protein conformations , 2020, Biochemical Society transactions.

[54]  Pieter Abbeel,et al.  Denoising Diffusion Probabilistic Models , 2020, NeurIPS.

[55]  Brian D. Weitzner,et al.  Macromolecular modeling and design in Rosetta: recent methods and frameworks , 2020, Nature Methods.

[56]  Alessandro Laio,et al.  Using metadynamics to explore complex free-energy landscapes , 2020 .

[57]  Sudhir Kumar,et al.  The Role of Conformational Dynamics and Allostery in Modulating Protein Evolution. , 2020, Annual review of biophysics.

[58]  Yasuhiro Matsunaga,et al.  Use of single-molecule time-series data for refining conformational dynamics in molecular simulations. , 2020, Current opinion in structural biology.

[59]  Yang Zhang,et al.  DeepMSA: constructing deep multiple sequence alignment to improve contact prediction and fold-recognition for distant-homology proteins , 2019, Bioinform..

[60]  Frank Noé,et al.  Machine learning for molecular simulation , 2019, Annual review of physical chemistry.

[61]  A. Rosato,et al.  An atomistic view of the YiiP structural changes upon zinc(II) binding. , 2019, Biochimica et biophysica acta. General subjects.

[62]  Yihang Wang,et al.  Machine learning approaches for analyzing and enhancing molecular dynamics simulations. , 2019, Current opinion in structural biology.

[63]  V. Calderone,et al.  Integrative Approaches in Structural Biology: A More Complete Picture from the Combination of Individual Techniques , 2019, Biomolecules.

[64]  Myle Ott,et al.  Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences , 2019, Proceedings of the National Academy of Sciences.

[65]  P. Selenko,et al.  Quo Vadis Biomolecular NMR Spectroscopy? , 2019, International journal of molecular sciences.

[66]  Marius Schmidt Time-Resolved Macromolecular Crystallography at Pulsed X-ray Sources , 2019, International journal of molecular sciences.

[67]  Dmitry Lyumkis,et al.  Challenges and opportunities in cryo-EM single-particle analysis , 2019, The Journal of Biological Chemistry.

[68]  Christopher J. Williams,et al.  MolProbity: More and better reference data for improved all‐atom structure validation , 2018, Protein science : a publication of the Protein Society.

[69]  Marco Biasini,et al.  lDDT: a local superposition-free score for comparing protein structures and models using distance difference tests , 2013, Bioinform..

[70]  J. Skolnick,et al.  Scoring function for automated assessment of protein structure template quality , 2004, Proteins.

[71]  OUP accepted manuscript , 2021, Nucleic Acids Research.