Perovskite Nanowire Laser for Hydrogen Chloride Gas Sensing.

Detection of hazardous volatile organic and inorganic species is a crucial task for addressing human safety in the chemical industry. Among these species, there are hydrogen halides (HX, X = Cl, Br, I) vastly exploited in numerous technological processes. Therefore, the development of a cost-effective, highly sensitive detector selective to any HX gas is of particular interest. Herein, we demonstrate the optical detection of hydrogen chloride gas with solution-processed halide perovskite nanowire lasers grown on a nanostructured alumina substrate. An anion exchange reaction between a CsPbBr3 nanowire and vaporized HCl molecules results in the formation of a structure consisting of a bromide core and thin mixed-halide CsPb(Cl,Br)3 shell. The shell has a lower refractive index than the core does. Therefore, the formation and further expansion of the shell reduce the field confinement for experimentally observed laser modes and provokes an increase in their frequency. This phenomenon is confirmed by the coherency of the data derived from XPS spectroscopy, EDX analysis, in situ XRD experiments, HRTEM images, and fluorescent microspectroscopy, as well as numerical modeling for Cl- ion diffusion and the shell-thickness-dependent spectral position of eigenmodes in a core-shell perovskite nanowire. The revealed optical response allows the detection of HCl molecules in the 5-500 ppm range. The observed spectral tunability of the perovskite nanowire lasers can be employed not only for sensing but also for their precise spectral tuning.

[1]  M. Rybin,et al.  Multifunctional and Transformative Metaphotonics with Emerging Materials. , 2022, Chemical reviews.

[2]  A. Nasibulin,et al.  Single‐Walled Carbon Nanotube Thin Film for Flexible and Highly Responsive Perovskite Photodetector , 2021, Advanced Functional Materials.

[3]  S. Kulinich,et al.  Directional Lasing from Nanopatterned Halide Perovskite Nanowire. , 2021, Nano letters.

[4]  A. Di Carlo,et al.  Mie-resonant mesoporous electron transport layer for highly efficient perovskite solar cells , 2021, Nano Energy.

[5]  Li Yu,et al.  On-chip unidirectional micro-nano-light sources based on multi-mode cesium lead halide perovskite nanowires , 2021, Applied Physics Letters.

[6]  S. Xiao,et al.  Enhanced Multiphoton Processes in Perovskite Metasurfaces. , 2021, Nano letters.

[7]  Chan Beom Park,et al.  Highly Stable Bulk Perovskite for Blue LEDs with Anion-Exchange Method. , 2021, Nano letters (Print).

[8]  Jun Hee Lee,et al.  Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells , 2021, Nature.

[9]  Justin R. Caram,et al.  Large-Area Synthesis and Patterning of All-Inorganic Lead Halide Perovskite Thin Films and Heterostructures. , 2021, Nano letters.

[10]  Qing Zhang,et al.  Halide Perovskite Semiconductor Lasers: Materials, Cavity Design, and Low Threshold. , 2021, Nano letters.

[11]  H. Atwater,et al.  Upconversion Plasmonic Lasing from an Organolead Trihalide Perovskite Nanocrystal with Low Threshold , 2020, ACS Photonics.

[12]  B. Rech,et al.  Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction , 2020, Science.

[13]  U. Rothlisberger,et al.  Vapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells , 2020, Science.

[14]  P. Frantsuzov,et al.  Are Shockley-Read-Hall and ABC models valid for lead halide perovskites? , 2020, Nature Communications.

[15]  Atula S. D. Sandanayaka,et al.  Stable room-temperature continuous-wave lasing in quasi-2D perovskite films , 2020, Nature.

[16]  Y. Kivshar,et al.  Broadband Antireflection with Halide Perovskite Metasurfaces , 2020, Laser & Photonics Reviews.

[17]  V. Fedorov,et al.  Perovskite - Gallium Phosphide Platform for Reconfigurable Visible-Light Nanophotonic Chip. , 2020, ACS nano.

[18]  A. Zakhidov,et al.  Room-Temperature Lasing from Mie-Resonant Non-Plasmonic Nanoparticles. , 2020, ACS nano.

[19]  Q. Tang,et al.  The unique dielectricity of inorganic perovskites toward high-performance triboelectric nanogenerators , 2020 .

[20]  Li Ge,et al.  Ultrafast control of vortex microlasers , 2020, Science.

[21]  S. Makarov,et al.  Single-particle perovskite lasers: from material properties to cavity design , 2020, Nanophotonics.

[22]  G. Fang,et al.  Space-Confined Growth of Individual Wide Bandgap Single Crystal CsPbCl3 Microplatelet for Near-Ultraviolet Photodetection. , 2019, Small.

[23]  Dawei Di,et al.  Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures , 2019, Nature Photonics.

[24]  Johannes L. Schönberger,et al.  SciPy 1.0: fundamental algorithms for scientific computing in Python , 2019, Nature Methods.

[25]  D. Mandal,et al.  Methylammonium Lead Iodide Incorporated Poly(vinylidene fluoride) Nanofibers for Flexible Piezoelectric-Pyroelectric Nanogenerator. , 2019, ACS applied materials & interfaces.

[26]  L. Quan,et al.  Quantitative imaging of anion exchange kinetics in halide perovskites , 2019, Proceedings of the National Academy of Sciences.

[27]  Yufei Zhang,et al.  Controllable Growth of Aligned Monocrystalline CsPbBr3 Microwire Arrays for Piezoelectric‐Induced Dynamic Modulation of Single‐Mode Lasing , 2019, Advanced materials.

[28]  K. Uvdal,et al.  Rational molecular passivation for high-performance perovskite light-emitting diodes , 2019, Nature Photonics.

[29]  A. Porfirev,et al.  Single-Mode Lasing from Imprinted Halide-Perovskite Microdisks. , 2019, ACS nano.

[30]  M. Miri,et al.  Exceptional points in optics and photonics , 2019, Science.

[31]  P. Lagoudakis,et al.  A Few-Minute Synthesis of CsPbBr3 Nanolasers with a High Quality Factor by Spraying at Ambient Conditions. , 2018, ACS applied materials & interfaces.

[32]  David T. Limmer,et al.  Intrinsic anion diffusivity in lead halide perovskites is facilitated by a soft lattice , 2018, Proceedings of the National Academy of Sciences.

[33]  L. Quan,et al.  Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent , 2018, Nature.

[34]  A. Zakhidov,et al.  Tunable Hybrid Fano Resonances in Halide Perovskite Nanoparticles. , 2018, Nano letters.

[35]  A. Pan,et al.  High-Quality In-Plane Aligned CsPbX3 Perovskite Nanowire Lasers with Composition-Dependent Strong Exciton-Photon Coupling. , 2018, ACS nano.

[36]  Song Jin,et al.  Visualization and Studies of Ion-Diffusion Kinetics in Cesium Lead Bromide Perovskite Nanowires. , 2018, Nano letters.

[37]  Y. Zhao,et al.  Switchable Single-Mode Perovskite Microlasers Modulated by Responsive Organic Microdisks. , 2018, Nano letters.

[38]  J. Michopoulos,et al.  Bright triplet excitons in caesium lead halide perovskites , 2017, Nature.

[39]  Xiao Wei Sun,et al.  High-performance piezoelectric nanogenerators composed of formamidinium lead halide perovskite nanoparticles and poly(vinylidene fluoride) , 2017 .

[40]  P. Yang,et al.  Spatially resolved multicolor CsPbX3 nanowire heterojunctions via anion exchange , 2017, Proceedings of the National Academy of Sciences.

[41]  L. Herz Charge-Carrier Mobilities in Metal Halide Perovskites: Fundamental Mechanisms and Limits , 2017 .

[42]  Yuri S. Kivshar,et al.  Multifold Emission Enhancement in Nanoimprinted Hybrid Perovskite Metasurfaces , 2017 .

[43]  Qing Liao,et al.  Patterning Multicolored Microdisk Laser Arrays of Cesium Lead Halide Perovskite , 2017, Advanced materials.

[44]  Shui-Tong Lee,et al.  Ultrahigh-Responsivity Photodetectors from Perovskite Nanowire Arrays for Sequentially Tunable Spectral Measurement. , 2017, Nano letters.

[45]  Lin-wang Wang,et al.  High Defect Tolerance in Lead Halide Perovskite CsPbBr3. , 2017, The journal of physical chemistry letters.

[46]  Behrad Gholipour,et al.  Organometallic Perovskite Metasurfaces , 2017, Advanced materials.

[47]  Shengye Jin,et al.  Long-Distance Charge Carrier Funneling in Perovskite Nanowires Enabled by Built-in Halide Gradient. , 2017, Journal of the American Chemical Society.

[48]  Marin Soljacic,et al.  Bound states in the continuum , 2016 .

[49]  Lijun Zhang,et al.  Fast Diffusion of Native Defects and Impurities in Perovskite Solar Cell Material CH3NH3PbI3 , 2016 .

[50]  Keitaro Sodeyama,et al.  First-Principles Study of Ion Diffusion in Perovskite Solar Cell Sensitizers. , 2015, Journal of the American Chemical Society.

[51]  M. Kovalenko,et al.  Fast Anion-Exchange in Highly Luminescent Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, I) , 2015, Nano letters.

[52]  Tze Chien Sum,et al.  Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers. , 2014, Nano letters.

[53]  Tomasz J. Antosiewicz,et al.  Plasmon–Exciton Interactions in a Core–Shell Geometry: From Enhanced Absorption to Strong Coupling , 2014 .

[54]  F. Duarte Tunable Laser Applications, Second Edition , 2008 .

[55]  Song Jin,et al.  Continuous‐Wave Lasing in Cesium Lead Bromide Perovskite Nanowires , 2018 .