Air-breathing electric propulsion: mission characterization and design analysis

[1]  E. Ferrato,et al.  Rarefied Flow Simulation of Conical Intake and Plasma Thruster for Very Low Earth Orbit Spaceflight , 2022, Frontiers in Physics.

[2]  C. Paissoni,et al.  Air-breathing electric propulsion: Flight envelope identification and development of control for long-term orbital stability , 2021, Acta Astronautica.

[3]  Jianjun Wu,et al.  Design and Optimization of vacuum Intake for Atmosphere-Breathing electric propulsion (ABEP) system , 2021, Vacuum.

[4]  J. Becedas,et al.  Intake Design for an Atmosphere-Breathing Electric Propulsion System (ABEP) , 2021, 2106.15912.

[5]  R. Wirz,et al.  Parametric Analysis of High-Delta-V CubeSat Missions with a Miniature Ion Thruster , 2021 .

[6]  S. Haigh,et al.  In-orbit aerodynamic coefficient measurements using SOAR (Satellite for Orbital Aerodynamics Research) , 2020, Acta Astronautica.

[7]  Jianjun Wu,et al.  A Comprehensive Review of Atmosphere-Breathing Electric Propulsion Systems , 2020 .

[8]  M. Sureda,et al.  The benefits of very low earth orbit for earth observation missions , 2020, Progress in Aerospace Sciences.

[9]  S. Jackson Design of an Air-Breathing Electric Thruster for CubeSat Applications , 2017 .

[10]  T. Binder,et al.  Transmission probabilities of rarefied flows in the application of atmosphere-breathing electric propulsion , 2016 .

[11]  X. Chen,et al.  Design and analysis of vacuum air-intake device used in air-breathing electric propulsion , 2015 .

[12]  Lake Austin Singh,et al.  Very low earth orbit propellant collection feasibility assessment , 2014 .

[13]  Rune Floberghagen,et al.  The Deorbiting of ESA’s Gravity Mission GOCE - Spacecraft Operations in Extreme Drag Conditions , 2014 .

[14]  R. Panton Incompressible Flow: Panton/Incompressible Flow 4E , 2013 .

[15]  K. Moe,et al.  Recommended Drag Coefficients for Aeronomic Satellites , 2013 .

[16]  Brian Argrow,et al.  Semiempirical Model for Satellite Energy-Accommodation Coefficients , 2010 .

[17]  C. Pardini,et al.  Drag and energy accommodation coefficients during sunspot maximum , 2010 .

[18]  D. Drob,et al.  Nrlmsise-00 Empirical Model of the Atmosphere: Statistical Comparisons and Scientific Issues , 2002 .

[19]  Joel Storch,et al.  Aerodynamic Disturbances on Spacecraft in Free-Molecular Flow , 2002 .

[20]  E. P. Muntz,et al.  Maintaining continuous low orbit flight by using in-situ atmospheric gases for propellant , 2002 .

[21]  James R. Wertz,et al.  Space Mission Analysis and Design , 1992 .

[22]  R. Walterscheid,et al.  Solar cycle effects on the upper atmosphere - Implications for satellite drag , 1989 .

[23]  L. Jacchia,et al.  Thermospheric temperature, density, and composition: New models , 1977 .

[24]  Lee H. Sentman,et al.  FREE MOLECULE FLOW THEORY AND ITS APPLICATION TO THE DETERMINATION OF AERODYNAMIC FORCES , 1961 .

[25]  R. Spektor,et al.  A BREATH OF FRESH AIR: AIR-SCOOPING ELECTRIC PROPULSION IN VERY LOW EARTH ORBIT , 2021 .

[26]  C. Paissoni,et al.  Development Roadmap of SITAEL ’ s RAM-EP System IEPC-2019-886 , 2019 .

[27]  Stefanos Fasoulas,et al.  Air-Intake Design Investigation for an Air-Breathing Electric Propulsion System IEPC-2015-90524 / ISTS-2015 , 2015 .

[28]  K. Komurasaki,et al.  Analysis of Atmosphere-Breathing Electric Propulsion , 2015, IEEE Transactions on Plasma Science.

[29]  Adam Shabshelowitz,et al.  Study of RF Plasma Technology Applied to Air-Breathing Electric Propulsion. , 2013 .

[30]  Principal Investigator,et al.  ATMOSPHERIC BREATHING ELECTRIC THRUSTER FOR PLANETARY EXPLORATION , 2012 .

[31]  P. Cefola,et al.  Description of the Russian Upper Atmosphere Density Model GOST-2004 , 2008 .

[32]  Marco Arcioni,et al.  RAM Electric Propulsion for Low Earth Orbit Operation: an ESA study. , 2007 .

[33]  Kazuhisa Fujita,et al.  Air Intake Performance of Air Breathing Ion Engines , 2004 .

[34]  G. Balmino,et al.  GOCE: Gravity field and steady-state Ocean Circulation Explorer , 2003 .