Grid Computing for the Estimation of Toxicity: Acute Toxicity on Fathead Minnow (Pimephales promelas)

The computational estimation of toxicity is time-consuming and therefore needs support for distributed, high-performance and/or grid computing. The major technology behind the estimation of toxicity is quantitative structure activity relationship modelling. It is a complex procedure involving data gathering, preparation and analysis. The current paper describes the use of grid computing in the computational estimation of toxicity and provides a comparative study on the acute toxicity of fathead minnow (Pimephales promelas) comparing the heuristic multi-linear regression and artificial neural network approaches for quantitative structure activity relationship models.

[1]  N. Draper,et al.  Applied Regression Analysis , 1966 .

[2]  G. Chang,et al.  An internal-coordinate Monte Carlo method for searching conformational space , 1989 .

[3]  I. Longden,et al.  EMBOSS: the European Molecular Biology Open Software Suite. , 2000, Trends in genetics : TIG.

[4]  Uko Maran,et al.  QSAR Modeling of Genotoxicity on Non-congeneric Sets of Organic Compounds , 2003, Artificial Intelligence Review.

[5]  Dietmar W. Erwin,et al.  UNICORE—a Grid computing environment , 2002, Concurr. Comput. Pract. Exp..

[6]  Sulev Sild,et al.  A General QSPR Treatment for Dielectric Constants of Organic Compounds , 2002, J. Chem. Inf. Comput. Sci..

[7]  Michael R. Shirts,et al.  Atomistic protein folding simulations on the submillisecond time scale using worldwide distributed computing. , 2003, Biopolymers.

[8]  W. Meylan,et al.  Atom/fragment contribution method for estimating octanol-water partition coefficients. , 1995, Journal of pharmaceutical sciences.

[9]  Andrew A. Chien,et al.  Entropia: architecture and performance of an enterprise desktop grid system , 2003, J. Parallel Distributed Comput..

[10]  Rajkumar Buyya,et al.  The Australian BioGrid Portal: Empowering the Molecular Docking Research Community , 2005 .

[11]  Steven Tuecke,et al.  The Physiology of the Grid An Open Grid Services Architecture for Distributed Systems Integration , 2002 .

[12]  Bernd Schuller,et al.  Grid-enabled data warehousing for molecular engineering , 2004, Parallel Comput..

[13]  Giuseppina C. Gini,et al.  Description of the Electronic Structure of Organic Chemicals Using Semiempirical and Ab Initio Methods for Development of Toxicological QSARs , 2005, J. Chem. Inf. Model..

[14]  Douglas M. Hawkins,et al.  The Problem of Overfitting , 2004, J. Chem. Inf. Model..

[15]  Bernd Schuller,et al.  OpenMolGRIND: Molecular Science and Engineering in a Grid Context , 2004, PDPTA.

[16]  C Helma,et al.  Validation of counter propagation neural network models for predictive toxicology according to the OECD principles: a case study , 2006, SAR and QSAR in environmental research.

[17]  Martin Saunders,et al.  Conformations of cycloheptadecane. A comparison of methods for conformational searching , 1990 .

[18]  C. Russom,et al.  QSAR modelling of the ERL-D fathead minnow acute toxicity database. , 1991, Xenobiotica; the fate of foreign compounds in biological systems.

[19]  D. Fabbro,et al.  Discovery of a potent and selective protein kinase CK2 inhibitor by high-throughput docking. , 2003, Journal of medicinal chemistry.

[20]  J. Baker An algorithm for the location of transition states , 1986 .

[21]  C. Russom,et al.  Predicting modes of toxic action from chemical structure: Acute toxicity in the fathead minnow (Pimephales promelas) , 1997 .

[22]  Bernd Schuller,et al.  OpenMolGRID: Using Automated Workflows in GRID Computing Environment , 2005, EGC.

[23]  Uko Maran,et al.  Mining of the chemical information in GRID environment , 2007, Future Gener. Comput. Syst..

[24]  Jack J. Dongarra,et al.  Biological sequence alignment on the computational grid using the GrADS framework , 2005, Future Gener. Comput. Syst..

[25]  Bernd Schuller,et al.  Application Driven Grid Developments in the OpenMolGRID Project , 2005, EGC.

[26]  Uko Maran,et al.  Open Computing Grid for Molecular Science and Engineering , 2006, J. Chem. Inf. Model..

[27]  Robert Stevens,et al.  {myGrid} and the drug discovery process , 2004 .

[28]  Uko Maran,et al.  QSAR Modeling of Mutagenicity on Non-Congeneric Sets of Organic Compounds , 2004, Artificial Intelligence Methods And Tools For Systems Biology.

[29]  T. Halgren MMFF VII. Characterization of MMFF94, MMFF94s, and other widely available force fields for conformational energies and for intermolecular‐interaction energies and geometries , 1999, Journal of computational chemistry.

[30]  P. Jurs,et al.  Prediction of fathead minnow acute toxicity of organic compounds from molecular structure. , 1999, Chemical research in toxicology.

[31]  Paola Gramatica,et al.  Statistically Validated QSARs, Based on Theoretical Descriptors, for Modeling Aquatic Toxicity of Organic Chemicals in Pimephales promelas (Fathead Minnow) , 2005, J. Chem. Inf. Model..

[32]  Emilio Benfenati,et al.  Modeling Toxicity by Using Supervised Kohonen Neural Networks , 2003, J. Chem. Inf. Comput. Sci..

[33]  T. Halgren Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94 , 1996, J. Comput. Chem..

[34]  Arun Krishnan,et al.  GEL: Grid execution language , 2005, J. Parallel Distributed Comput..

[35]  J. Stewart Optimization of parameters for semiempirical methods. III Extension of PM3 to Be, Mg, Zn, Ga, Ge, As, Se, Cd, In, Sn, Sb, Te, Hg, Tl, Pb, and Bi , 1991 .

[36]  Steven W. Muchmore,et al.  High-Throughput Calculation of Protein-Ligand Binding Affinities: Modification and Adaptation of the MM-PBSA Protocol to Enterprise Grid Computing , 2006, J. Chem. Inf. Model..

[37]  James J. P. Stewart,et al.  MOPAC: A semiempirical molecular orbital program , 1990, J. Comput. Aided Mol. Des..

[38]  Jean-Loup Faulon,et al.  Designing Novel Polymers with Targeted Properties Using the Signature Molecular Descriptor , 2006, J. Chem. Inf. Model..