Image Segmentation and Pattern Recognition: A Novel Concept, the Histogram of Connected Elements

The segmentation process is a crucial step in any computer-based vision system or application, due to its inherent difficulty and the importance of its results, which are decisive for the global efficiency of the vision system. The objective of segmentation is to individualize any different regions present in any particular image. Our main concern in this chapter is to model the image segmentation process as a pattern recognition problem, which, as an important practical corollary, implies that any method or technique from the pattern recognition field can, in principle, be applied to solve the segmentation problem in any computer-based vision system or application.

[1]  Keinosuke Fukunaga,et al.  Statistical Pattern Recognition , 1993, Handbook of Pattern Recognition and Computer Vision.

[2]  J. Besag On the Statistical Analysis of Dirty Pictures , 1986 .

[3]  B. Julesz Textons, the elements of texture perception, and their interactions , 1981, Nature.

[4]  P.K Sahoo,et al.  A survey of thresholding techniques , 1988, Comput. Vis. Graph. Image Process..

[5]  Anil K. Jain,et al.  Texture Analysis , 2018, Handbook of Image Processing and Computer Vision.

[6]  John A. Richards,et al.  Remote Sensing Digital Image Analysis , 1986 .

[7]  Larry S. Davis,et al.  Contour-based motion estimation , 1982, Comput. Vis. Graph. Image Process..

[8]  S. Olsnes Directing toxins to cancer cells , 1981, Nature.

[9]  Richard W. Conners,et al.  A Theoretical Comparison of Texture Algorithms , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Martin D. Levine,et al.  Vision in Man and Machine , 1985 .

[11]  Linda G. Shapiro,et al.  Computer and Robot Vision , 1991 .

[12]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  S. Soltani,et al.  SURVEY A Survey of Thresholding Techniques , 1988 .

[14]  G Valli,et al.  An algorithm for real-time vessel enhancement and detection. , 1997, Computer methods and programs in biomedicine.

[15]  Ying Sun,et al.  Back-propagation network and its configuration for blood vessel detection in angiograms , 1995, IEEE Trans. Neural Networks.

[16]  R. Casey,et al.  Advances in Pattern Recognition , 1971 .

[17]  José Mira,et al.  Bio-Inspired Applications of Connectionism , 2001, Lecture Notes in Computer Science.

[18]  Frederick M. Waltz,et al.  Intelligent machine vision - techniques, implementations and applications , 2001 .

[19]  Graham W. Horgan,et al.  Image analysis for the biological sciences , 1997 .

[20]  Georgy L. Gimel'farb,et al.  Image Textures and Gibbs Random Fields , 1999, Computational Imaging and Vision.

[21]  Julian Besag,et al.  Digital Image Processing: Towards Bayesian image analysis , 1989 .

[22]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[23]  C. H. Chen,et al.  Handbook of Pattern Recognition and Computer Vision , 1993 .

[24]  Miguel A. Patricio,et al.  Segmentation of Text and Graphics/Images Using the Gray-Level Histogram Fourier Transform , 2000, SSPR/SPR.

[25]  Milan Sonka,et al.  Image Processing, Analysis and Machine Vision , 1993, Springer US.

[26]  S. Sangwine,et al.  The Colour Image Processing Handbook , 1998, Springer US.

[27]  Anil K. Jain,et al.  Statistical Pattern Recognition: A Review , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Miguel A. Patricio,et al.  Wood Texture Analysis by Combining the Connected Elements Histogram and Artificial Neural Networks , 2001, IWANN.

[29]  Julian Besag,et al.  Towards Bayesian image analysis , 1993 .

[30]  A. Dale Magoun,et al.  Decision, estimation and classification , 1989 .

[31]  Pierre Soille,et al.  Mathematical Morphology and Its Applications to Image Processing , 1994, Computational Imaging and Vision.

[32]  Rama Chellappa,et al.  Model-based texture Segmentation and Classification , 1993, Handbook of Pattern Recognition and Computer Vision.

[33]  Azriel Rosenfeld,et al.  A Comparative Study of Texture Measures for Terrain Classification , 1975, IEEE Transactions on Systems, Man, and Cybernetics.

[34]  David G. Stork,et al.  Pattern Classification , 1973 .

[35]  Calvin C. Gotlieb,et al.  Texture descriptors based on co-occurrence matrices , 1990, Comput. Vis. Graph. Image Process..

[36]  Azriel Rosenfeld,et al.  Scene Labeling by Relaxation Operations , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[37]  Xiuzhen Cheng,et al.  A Simple Implementation of the Stochastic Discrimination for Pattern Recognition , 2000, SSPR/SPR.

[38]  H. B. Mitchell Markov Random Fields , 1982 .

[39]  Charles W. Therrien,et al.  An estimation-theoretic approach to terrain image segmentation , 1983, Comput. Vis. Graph. Image Process..

[40]  Azriel Rosenfeld,et al.  Digital Picture Processing , 1976 .

[41]  Laveen N. Kanal,et al.  Classification of binary random patterns , 1965, IEEE Trans. Inf. Theory.

[42]  P. Eichel,et al.  A method for a fully automatic definition of coronary arterial edges from cineangiograms. , 1988, IEEE transactions on medical imaging.