Functional Relations, Sharp Mapping Properties, and Regularization of the X-Ray Transform on Disks of Constant Curvature

On simple geodesic disks of constant curvature, we derive new functional relations for the geodesic X-ray transform, involving a certain class of elliptic differential operators whose ellipticity degenerates normally at the boundary. We then use these relations to derive sharp mapping properties for the X-ray transform and its corresponding normal operator. Finally, we discuss the possibility of theoretically rigorous regularized inversions for the X-ray transform when defined on such manifolds.

[1]  B. Rubin Weighted norm estimates for the Semyanistyi fractional integrals and Radon transforms , 2012, 1210.5414.

[2]  Tomoyuki Kakehi Integral Geometry on Grassmann Manifolds and Calculus of Invariant Differential Operators , 1999 .

[3]  S. Helgason Integral Geometry and Radon Transforms , 2010 .

[4]  M. Salo,et al.  Invariant distributions, Beurling transforms and tensor tomography in higher dimensions , 2014, Mathematische Annalen.

[5]  Rohit Kumar Mishra,et al.  Range characterizations and Singular Value Decomposition of the geodesic X-ray transform on disks of constant curvature , 2021, Journal of Spectral Theory.

[6]  François Monard,et al.  Numerical Implementation of Geodesic X-Ray Transforms and Their Inversion , 2013, SIAM J. Imaging Sci..

[7]  David Feldman,et al.  Identities among Euclidean Sonar and Radon transforms , 2009, Adv. Appl. Math..

[8]  Joonas Ilmavirta,et al.  4. Integral geometry on manifolds with boundary and applications , 2018, The Radon Transform.

[9]  Alfred K. Louis Orthogonal Function Series Expansions and the Null Space of the Radon Transform , 1984 .

[10]  C. Guillarmou,et al.  Reconstruction formulas for X-ray transforms in negative curvature , 2015, 1511.05516.

[11]  G. Uhlmann,et al.  The geodesic X-ray transform with fold caustics , 2010, 1004.1007.

[12]  Richard Nickl,et al.  Efficient nonparametric Bayesian inference for $X$-ray transforms , 2017, The Annals of Statistics.

[13]  G. Bal Ray transforms in hyperbolic geometry , 2005 .

[14]  G. Uhlmann,et al.  On the microlocal analysis of the geodesic X-ray transform with conjugate points , 2015, 1502.06545.

[15]  Petra Ostermann Elliptic Partial Differential Equations And Quasiconformal Mappings In The Plane Pms 48 , 2016 .

[16]  G. Uhlmann,et al.  The Geodesic Ray Transform on Riemannian Surfaces with Conjugate Points , 2014, 1402.5559.

[17]  P. Maass Singular value decompositions for Radon transforms , 1991 .

[18]  S. K. Ray,et al.  Mixed norm estimate for Radon transform on weighted Lp spaces , 2010 .

[19]  Yernat M. Assylbekov,et al.  Sharp stability estimate for the geodesic ray transform , 2018, Inverse Problems.

[20]  Mazzeo Rafe Elliptic theory of differential edge operators I , 1991 .

[21]  Jan Boman,et al.  Stability estimates in tensor tomography , 2018 .

[22]  Bernard W. Silverman,et al.  Speed of Estimation in Positron Emission Tomography and Related Inverse Problems , 1990 .

[23]  F. Alberto Grünbaum Differential Operators Commuting with Convolution Integral Operators , 1983 .

[24]  On the inversion formulas of Pestov and Uhlmann for the geodesic ray transform , 2010 .

[25]  von F. Zernike Beugungstheorie des schneidenver-fahrens und seiner verbesserten form, der phasenkontrastmethode , 1934 .

[27]  François Monard,et al.  Inversion of the Attenuated Geodesic X-Ray Transform over Functions and Vector Fields on Simple Surfaces , 2015, SIAM J. Math. Anal..

[28]  F. Natterer The Mathematics of Computerized Tomography , 1986 .

[29]  C. Epstein,et al.  Degenerate Diffusion Operators Arising in Population Biology , 2011, 1110.0032.

[30]  Non-geodesic Spherical Funk Transforms with One and Two Centers , 2019, 1904.11457.

[31]  A. Cormack Representation of a Function by Its Line Integrals, with Some Radiological Applications , 1963 .

[32]  G. Szegő Zeros of orthogonal polynomials , 1939 .

[33]  Fulton B. Gonzalez,et al.  Invariant differential operators and the range of the matrix Radon transform , 2006 .

[34]  G. Uhlmann,et al.  On characterization of the range and inversion formulas for the geodesic X-ray transform , 2004 .

[35]  S. G. Kazantsev,et al.  Singular value decomposition for the 2D fan-beam Radon transform of tensor fields , 2004 .

[36]  V. Palamodov,et al.  Reconstruction from limited data of arc means , 2000 .