A New Data Structure for the Nondominance Problem in Multi-objective Optimization

We propose a new data structure for the efficient computation of the nondominance problem which occurs in most multi-objective optimization algorithms. The strength of our data structure is illustrated by a comparison both to the linear list approach and the quad tree approach on a category of problems. The computational results indicate that our method is particularly advantageous in the case where the proportion of the nondominated vectors versus the total set of criterion vectors is not too large.

[1]  Edward M. McCreight,et al.  Priority Search Trees , 1985, SIAM J. Comput..

[2]  Jon Louis Bentley,et al.  Multidimensional binary search trees used for associative searching , 1975, CACM.

[3]  Michiel H. M. Smid,et al.  The Rectangle Enclosure and Point-Dominance Problems Revisited , 1997, Int. J. Comput. Geom. Appl..

[4]  Jürgen Teich,et al.  Comparison of data structures for storing Pareto-sets in MOEAs , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[5]  Minghe Sun,et al.  Quad-Trees and Linear Lists for Identifying Nondominated Criterion Vectors , 1996, INFORMS J. Comput..

[6]  Jonathan E. Fieldsend,et al.  Full Elite Sets for Multi-Objective Optimisation , 2002 .

[7]  Jon Louis Bentley,et al.  Quad trees a data structure for retrieval on composite keys , 1974, Acta Informatica.

[8]  Jon Louis Bentley,et al.  Data Structures for Range Searching , 1979, CSUR.

[9]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[10]  Jonathan E. Fieldsend,et al.  Using unconstrained elite archives for multiobjective optimization , 2003, IEEE Trans. Evol. Comput..

[11]  W. Habenicht,et al.  Quad Trees, a Datastructure for Discrete Vector Optimization Problems , 1983 .

[12]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[13]  Ralph E. Steuer,et al.  InterQuad: An interactive quad tree based procedure for solving the discrete alternative multiple criteria problem , 1996 .