Understanding electrocatalytic activity of titanium and samarium doped ceria as anode material for solid oxide fuel cells

[1]  D. Santos,et al.  Towards the Commercialization of Solid Oxide Fuel Cells: Recent Advances in Materials and Integration Strategies , 2021, Fuels.

[2]  Zhihua Wang,et al.  Selective catalytic reduction of NOx with NH3 over a novel Co-Ce-Ti catalyst , 2020 .

[3]  Dingbiao Wang,et al.  Review of cell performance in solid oxide fuel cells , 2020, Journal of Materials Science.

[4]  Jianhua Liu,et al.  Electrical properties of Fe-doped SrTiO3 with B-site-deficient for SOFC anodes , 2019 .

[5]  M. Ahamed,et al.  Microstructural properties and enhanced photocatalytic performance of Zn doped CeO2 nanocrystals , 2017, Scientific Reports.

[6]  Minoru Suzuki,et al.  Development and Commercialization of New Residential SOFC CHP System , 2017 .

[7]  M. G. Norton,et al.  Ni-(Ce 0.8-x Ti x )Sm 0.2 O 2-δ anode for low temperature solid oxide fuel cells running on dry methane fuel , 2017 .

[8]  A. Muchtar,et al.  A review on the selection of anode materials for solid-oxide fuel cells , 2015 .

[9]  E. Brodnikovskii Solid Oxide Fuel Cell Anode Materials , 2015, Powder Metallurgy and Metal Ceramics.

[10]  J. P. Olivier,et al.  Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) , 2015 .

[11]  T. Matsui,et al.  Microstructural Evolution of Ni–YSZ Cermet Anode under Thermal Cycles with Redox Treatments , 2015 .

[12]  Stuart H. Taylor,et al.  Au deposited on CeO2 prepared by a nanocasting route: A high activity catalyst for CO oxidation , 2014 .

[13]  Huaiyu Zhu,et al.  A NiFeCu alloy anode catalyst for direct-methane solid oxide fuel cells , 2014 .

[14]  S. R. Barman,et al.  Gd/Sm dopant-modified oxidation state and defect generation in nano-ceria , 2014 .

[15]  E. Miller,et al.  Fe-substituted SrTiO3−δ–Ce0.9Gd0.1O2 composite anodes for solid oxide fuel cells , 2013 .

[16]  Qing Xu,et al.  Electrochemical performance of a copper-impregnated Ni–Ce0.8Sm0.2O1.9 anode running on methane , 2013 .

[17]  E. Traversa,et al.  Stability of the Ce3+ valence state in cerium oxide nanoparticle layers. , 2012, Nanoscale.

[18]  W. Chueh,et al.  Highly Enhanced Concentration and Stability of Reactive Ce3+ on Doped CeO2 Surface Revealed In Operando , 2012 .

[19]  Byung-Guk Ahn,et al.  Characterization of La0.6Sr0.4Co0.2Fe0.8O3–δ + La2NiO4+δ Composite Cathode Materials for Solid Oxide Fuel Cells , 2012 .

[20]  F. Chen,et al.  Sm 0.2 (Ce 1-x Ti x ) 0.8 O 1.9 Modified Ni-Yttria-Stabilized Zirconia Anode for Direct Methane Fuel Cell , 2011 .

[21]  H. Bajaj,et al.  Facile Low-Temperature Synthesis of Ceria and Samarium-Doped Ceria Nanoparticles and Catalytic Allylic Oxidation of Cyclohexene , 2011 .

[22]  E. Paparazzo On the curve-fitting of XPS Ce(3d) spectra of cerium oxides , 2011 .

[23]  Chenghao Yang,et al.  Self-rising synthesis of Ni–SDC cermets as anodes for solid oxide fuel cells , 2010 .

[24]  C. Song,et al.  Characterization of Structural and Surface Properties of Nanocrystalline TiO2−CeO2 Mixed Oxides by XRD, XPS, TPR, and TPD , 2009 .

[25]  Hwan Moon,et al.  Fabrication and characterization of Cu–Ni–YSZ SOFC anodes for direct use of methane via Cu-electroplating , 2009 .

[26]  F. Gao,et al.  Electrical properties of yttrium doped strontium titanate with A-site deficiency as potential anode materials for solid oxide fuel cells , 2009 .

[27]  K. Feng,et al.  High performance Ni–Sm2O3 cermet anodes for intermediate-temperature solid oxide fuel cells , 2009 .

[28]  M. Nolan Molecular Adsorption on the Doped (110) Ceria Surface , 2009 .

[29]  Manoj Pillai,et al.  Fuel-flexible operation of a solid oxide fuel cell with Sr0.8La0.2TiO3 support , 2008 .

[30]  T. Lü,et al.  Electrochemical performance of Pr0.7Sr0.3Co0.9Cu0.1O3−δ–Ce0.8Sm0.2O1.9 composite cathodes in intermediate-temperature solid oxide fuel cells , 2008 .

[31]  Huanying Liu,et al.  Investigation of Sm0.5Sr0.5CoO3−δ/Co3O4 composite cathode for intermediate-temperature solid oxide fuel cells , 2008 .

[32]  Z. Lü,et al.  Study on Ba0.5Sr0.5Co0.8Fe0.2O3−δ–Sm0.5Sr0.5CoO3−δ composite cathode materials for IT-SOFCs , 2008 .

[33]  B. Yi,et al.  Performance of an anode-supported tubular solid oxide fuel cell (SOFC) under pressurized conditions , 2008 .

[34]  Liming Yang,et al.  Y-doped SrTiO3 based sulfur tolerant anode for solid oxide fuel cells , 2007 .

[35]  V. Antonucci,et al.  Performance and life-time behaviour of NiCu–CGO anodes for the direct electro-oxidation of methane in IT-SOFCs , 2007 .

[36]  J. Fergus Electrolytes for solid oxide fuel cells , 2006 .

[37]  Khiam Aik Khor,et al.  High-performance low-temperature solid oxide fuel cell with novel BSCF cathode , 2006 .

[38]  R. Maric,et al.  Sm0.5Sr0.5CoO3 + Sm0.2Ce0.8O1.9 composite cathode for cermet supported thin Sm0.2Ce0.8O1.9 electrolyte SOFC operating below 600 °C , 2006 .

[39]  K. Murata,et al.  Ni-SDC cermet anode fabricated from NiO–SDC composite powder for intermediate temperature SOFC , 2006 .

[40]  Jeffrey W. Fergus,et al.  Oxide anode materials for solid oxide fuel cells , 2006 .

[41]  P. Scardi,et al.  X‐ray Diffraction Methodology for the Microstructural Analysis of Nanocrystalline Powders: Application to Cerium Oxide , 2004 .

[42]  G. Meng,et al.  Synthesis and properties of Ni–SDC cermets for IT–SOFC anode by co-precipitation , 2004 .

[43]  John T. S. Irvine,et al.  A redox-stable efficient anode for solid-oxide fuel cells , 2003, Nature materials.

[44]  A. Trovarelli Structural and Oxygen Storage/Release Properties of CeO2-Based Solid Solutions , 1999 .

[45]  M. Romeo,et al.  XPS Study of the reduction of cerium dioxide , 1993 .

[46]  A. Manthiram,et al.  Oxide-Ion Electrolytes , 1992 .

[47]  G. Thornton,et al.  Satellite structure in the X-ray photoelectron spectra of some binary and mixed oxides of lanthanum and cerium , 1976 .