BANDIT-BASED MULTI-START STRATEGIES FOR GLOBAL CONTINUOUS OPTIMIZATION
暂无分享,去创建一个
G. Pedrielli | E. P. Chew | P. Lendermann | C. G. Corlu | S. Shashaani | E. Song | T. Roeder | Y. Peng | L. H. Lee
[1] L. J. Hong,et al. Review on ranking and selection: A new perspective , 2020, Frontiers of Engineering Management.
[2] Nicola Gatti,et al. Sliding-Window Thompson Sampling for Non-Stationary Settings , 2020, J. Artif. Intell. Res..
[3] Sheetal Kalyani,et al. Taming Non-stationary Bandits: A Bayesian Approach , 2017, ArXiv.
[4] George Cybenko,et al. Parallel Computing for Machine Learning in Social Network Analysis , 2017, 2017 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW).
[5] András György,et al. Efficient Multi-Start Strategies for Local Search Algorithms , 2009, J. Artif. Intell. Res..
[6] Sam Kwong,et al. Gbest-guided artificial bee colony algorithm for numerical function optimization , 2010, Appl. Math. Comput..
[7] Aurélien Garivier,et al. On Upper-Confidence Bound Policies for Non-Stationary Bandit Problems , 2008, 0805.3415.
[8] Leo Liberti,et al. Introduction to Global Optimization , 2006 .
[9] Peter Auer,et al. Finite-time Analysis of the Multiarmed Bandit Problem , 2002, Machine Learning.
[10] Alexander Mendiburu,et al. Multi-start Methods , 2018, Handbook of Heuristics.
[11] Chun-Hung Chen,et al. Simulation Budget Allocation for Further Enhancing the Efficiency of Ordinal Optimization , 2000, Discret. Event Dyn. Syst..
[12] J. Spall. Implementation of the simultaneous perturbation algorithm for stochastic optimization , 1998 .
[13] J. Spall. Multivariate stochastic approximation using a simultaneous perturbation gradient approximation , 1992 .
[14] A.H.G. Rinnooy Kan,et al. Chapter IX Global optimization , 1989 .
[15] P. Whittle. Restless bandits: activity allocation in a changing world , 1988, Journal of Applied Probability.