Multiattribute Nonlinear Utility Theory

Independence axioms similar to those proposed for multiattribute von Neumann--Morgenstern linear utility theory are examined in the context of new nonlinear utility theories developed by Chew and MacCrimmon, and Fishburn. These new theories weaken the independence axiom of von Neumann and Morgenstern, and Fishburn's theory does not require preferences to be transitive. The paper shows that axioms for independence between attributes lead to decompositions of utility for the nonlinear theories that are related to standard decompositions for linear utility.

[1]  R. Luce Semiorders and a Theory of Utility Discrimination , 1956 .

[2]  P. Fishburn Transitive measurable utility , 1983 .

[3]  Peter C. Fishburn,et al.  von Neumann-Morgenstera Utility Functions on Two Attributes , 1974, Oper. Res..

[4]  Peter H. Farquhar,et al.  Errata to “A Survey of Multiattribute Utility Theory and Applications” , 1978 .

[5]  Ralph L. Keeney,et al.  Quasi-separable utility functions† , 1968 .

[6]  A. Tversky,et al.  Who accepts Savage's axiom? , 1974 .

[7]  R. L. Keeney,et al.  Decisions with Multiple Objectives: Preferences and Value Trade-Offs , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[8]  R. Keeney Utility Functions for Multiattributed Consequences , 1972 .

[9]  M. Allais Le comportement de l'homme rationnel devant le risque : critique des postulats et axiomes de l'ecole americaine , 1953 .

[10]  Robert A. Pollak,et al.  Additive von Neumann-Morgenstern Utility Functions , 1967 .

[11]  A. Tversky Intransitivity of preferences. , 1969 .

[12]  J. Milnor,et al.  AN AXIOMATIC APPROACH TO MEASURABLE UTILITY , 1953 .

[13]  Peter C. Fishburn,et al.  Intransitive Indifference in Preference Theory: A Survey , 1970, Oper. Res..

[14]  A. Tversky,et al.  Prospect Theory : An Analysis of Decision under Risk Author ( s ) : , 2007 .

[15]  Peter C. Fishburn,et al.  Independence in Utility Theory with Whole Product Sets , 1965 .

[16]  Choices among uncertain outcomes: a test of a decomposition and two assumptions of transitivity. , 1962 .

[17]  Peter H. Farquhar,et al.  A Fractional Hypercube Decomposition Theorem for Multiattribute Utility Functions , 1975, Oper. Res..

[18]  D G Morrison,et al.  On the consistency of preferences in Allais' paradox. , 1967, Behavioral science.

[19]  K. MacCrimmon DESCRIPTIVE AND NORMATIVE IMPLICATIONS OF THE DECISION THEORY POSTULATES. A SUMMARY OF EXPERIMENTAL RESULTS WITH BUSINESS EXECUTIVES , 1966 .

[20]  Peter C. Fishburn,et al.  Finite-Degree Utility Independence , 1982, Math. Oper. Res..

[21]  P. Fishburn Nontransitive measurable utility , 1982 .

[22]  Peter C. Fishburn,et al.  An axiomatic characterization of skew-symmetric bilinear functionals, with applications to utility theory , 1981 .