Integrating risk management tools for regional forest planning: an interactive multiobjective value-at-risk approach

In this paper, we present an approach employing multiobjective optimization to support decision making in forest management planning under risk. The primary objectives are biodiversity and timber cash flow, evaluated from two perspectives: the expected value and the value-at-risk (VaR). In addition, the risk level for both the timber cash flow and biodiversity values are included as objectives. With our approach, we highlight the trade-off between the expected value and the VaR, as well as between the VaRs of the two objectives of interest. We employ an interactive method in which a decision maker iteratively provides preference information to find the most preferred management plan and learns about the interdependencies of the objectives at the same time. The method is illustrated with a case study in which biodiversity is assessed through an index calculated from the characteristics of the forest. Uncertainty is included both through modifying the input data according to the accuracy of current inventor...

[1]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[2]  Ljusk Ola Eriksson,et al.  Review. Assessing uncertainty and risk in forest planning and decision support systems: review of classical methods and introduction of new approaches , 2013 .

[3]  Vassiliki Kazana,et al.  A decision support modelling framework for multiple use forest management: The Queen Elizabeth Forest case study in Scotland , 2003, Eur. J. Oper. Res..

[4]  A. Wierzbicki On the completeness and constructiveness of parametric characterizations to vector optimization problems , 1986 .

[5]  EyvindsonKyle,et al.  Stochastic goal programming in forest planning , 2014 .

[6]  Markku Siitonen Experiences in the use of forest management planning models. , 1993 .

[7]  Kaisa Miettinen,et al.  Synchronous approach in interactive multiobjective optimization , 2006, Eur. J. Oper. Res..

[8]  A. Wierzbicki A Mathematical Basis for Satisficing Decision Making , 1982 .

[9]  Kaisa Miettinen,et al.  Introduction to Multiobjective Optimization: Interactive Approaches , 2008, Multiobjective Optimization.

[10]  Dmitry Podkopaev,et al.  Interactive Nonlinear Multiobjective Optimization Methods , 2016 .

[11]  Pekka Korhonen,et al.  Behavioral Issues in MCDM: Neglected Research Questions , 1996 .

[12]  F. Knight The economic nature of the firm: From Risk, Uncertainty, and Profit , 2009 .

[13]  Joseph Buongiorno,et al.  Risk aversion and risk seeking in multicriteria forest management: a Markov decision process approach , 2017 .

[14]  Theodor J. Stewart,et al.  Interactive multiobjective optimization with NIMBUS for decision making under uncertainty , 2014, OR Spectr..

[15]  Francis X. Diebold,et al.  Elements of Forecasting , 1997 .

[16]  Antti Ihalainen,et al.  Keski-Suomen metsäkeskuksen alueen metsävarat ja niiden kehitys 1967–96 , 1970 .

[17]  Stan Uryasev,et al.  Modeling and optimization of risk , 2011 .

[18]  Melvyn Sim,et al.  The Price of Robustness , 2004, Oper. Res..

[19]  María Triviño,et al.  Data from: Optimizing management to enhance multifunctionality in a boreal forest landscape , 2017, JYX.

[20]  Annika Kangas,et al.  Correlations, distributions, and trends in forest inventory errors and their effects on forest planning , 2010 .

[21]  Michael Bevers A chance constraint estimation approach to optimizing resource management under uncertainty , 2007 .

[22]  D. Duffie,et al.  An Overview of Value at Risk , 1997 .

[23]  Joseph Buongiorno,et al.  Multicriteria Forest Decisionmaking under Risk with Goal-Programming Markov Decision Process Models , 2017 .

[24]  Annika Kangas,et al.  Evaluating the required scenario set size for stochastic programming in forest management planning: incorporating inventory and growth model uncertainty , 2016 .

[25]  Bernardo K. Pagnoncelli,et al.  The stochastic Mitra–Wan forestry model: risk neutral and risk averse cases , 2015 .

[26]  A. Tversky,et al.  Prospect theory: analysis of decision under risk , 1979 .

[27]  L. S. Davis,et al.  Interactive resolution of multi-objective forest planning problems with shadow price and parametric analysis , 1995 .

[28]  Pierre Tolla,et al.  An interactive multiobjective nonlinear programming procedure , 1993 .

[29]  Wlodzimierz Ogryczak,et al.  On Extending the LP Computable Risk Measures to Account Downside Risk , 2005, Comput. Optim. Appl..

[30]  Annika Kangas,et al.  Integrating risk preferences in forest harvest scheduling , 2015, Annals of Forest Science.

[31]  A. Kangas,et al.  Decision Support for Forest Management , 2008, Managing Forest Ecosystems.

[32]  Annika Kangas,et al.  Influence of growth prediction errors on the expected losses from forest decisions. , 2010 .

[33]  Ian N. Durbach,et al.  Modeling uncertainty in multi-criteria decision analysis , 2012, Eur. J. Oper. Res..

[34]  Pete Bettinger,et al.  Forest Management and Planning , 2008 .

[35]  Kaisa Miettinen,et al.  Global formulation for interactive multiobjective optimization , 2011, OR Spectr..

[36]  Kjetil Fagerholt,et al.  Solving Hierarchical Stochastic Programs: Application to the Maritime Fleet Renewal Problem , 2015, INFORMS J. Comput..

[37]  Horand I. Gassmann,et al.  Optimal harvest of a forest in the presence of uncertainty , 1989 .

[38]  Tero Heinonen,et al.  Habitat suitability models of saproxylic red-listed boreal forest species in long-term matrix management: Cost-effective measures for multi-species conservation , 2007 .

[39]  Kyle Eyvindson,et al.  Implementing the conditional value at risk approach for even-flow forest management planning , 2016 .

[40]  A. Tversky,et al.  Prospect theory: an analysis of decision under risk — Source link , 2007 .

[41]  Ilan Vertinsky,et al.  An interactive multiobjective approach to harvest decisions in forest planning. , 1998 .

[42]  Cristian D. Palma,et al.  A robust optimization approach protected harvest scheduling decisions against uncertainty , 2009 .

[43]  R. Rockafellar,et al.  Optimization of conditional value-at risk , 2000 .

[44]  D. Boychuk,et al.  A Multistage Stochastic Programming Model for Sustainable Forest-Level Timber Supply Under Risk of Fire , 1996, Forest Science.

[45]  Antti Mäkinen,et al.  SIMO: An adaptable simulation framework for multiscale forest resource data , 2009 .

[46]  Kyle Eyvindson,et al.  Data-Based Forest Management with Uncertainties and Multiple Objectives , 2016, MOD.

[47]  R. S. Laundy,et al.  Multiple Criteria Optimisation: Theory, Computation and Application , 1989 .

[48]  Ralph E. Steuer Multiple criteria optimization , 1986 .

[49]  Kaisa Miettinen,et al.  A survey on handling computationally expensive multiobjective optimization problems using surrogates: non-nature inspired methods , 2015, Structural and Multidisciplinary Optimization.

[50]  Thomas Knoke,et al.  May risk aversion lead to near-natural forestry? A simulation study , 2011 .