Forward and backward propagation of dendritic impulses and their synaptic control in mitral cells.

The site of impulse initiation is crucial for the integrative actions of mammalian central neurons, but this question is currently controversial. Some recent studies support classical evidence that the impulse always arises in the soma-axon hillock region, with back-propagation through excitable dendrites, whereas others indicate that the dendrites are sufficiently excitable to initiate impulses that propagate forward along the dendrite to the soma-axon hillock. This issue has been addressed in the olfactory mitral cell, in which excitatory synaptic input is restricted to the distal tuft of a single primary dendrite. In rat olfactory bulb slices, dual whole cell recordings were made at or near the soma and from distal sites on the primary dendrite. The results show that the impulse can be initiated in either the soma-axon hillock or in the distal primary dendrite, and that the initiation site is controlled physiologically by the excitatory synaptic inputs to the distal tuft and inhibitory synaptic inputs near the soma.

[1]  K. Mori,et al.  Spike generation in the mitral cell dendrite of the rabbit olfactory bulb , 1975, Brain Research.

[2]  W. N. Ross,et al.  IPSPs strongly inhibit climbing fiber-activated [Ca2+]i increases in the dendrites of cerebellar Purkinje neurons , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[3]  K. Mori Membrane and synaptic properties of identified neurons in the olfactory bulb , 1987, Progress in Neurobiology.

[4]  O Herreras,et al.  Propagating dendritic action potential mediates synaptic transmission in CA1 pyramidal cells in situ. , 1990, Journal of neurophysiology.

[5]  J. DeFelipe,et al.  The pyramidal neuron of the cerebral cortex: Morphological and chemical characteristics of the synaptic inputs , 1992, Progress in Neurobiology.

[6]  D. Prince,et al.  Electrophysiology of isolated hippocampal pyramidal dendrites , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[7]  W. T. Nickell,et al.  Orthodromic synaptic activation of rat olfactory bulb mitral cells in isolated slices , 1996, Brain Research Bulletin.

[8]  L H HAMLYN,et al.  Action potentials of the pyramidal neurones in the hippocampus of the rabbit , 1955, The Journal of physiology.

[9]  T. Sejnowski,et al.  A model of spike initiation in neocortical pyramidal neurons , 1995, Neuron.

[10]  N. Spruston,et al.  Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. , 1995, Science.

[11]  H. T. Chang,et al.  Cortical neurons with particular reference to the apical dendrites. , 1952, Cold Spring Harbor symposia on quantitative biology.

[12]  M. T. Shipley,et al.  Olfactory nerve stimulation activates rat mitral cells via NMDA and non‐NMDA receptors in vitro , 1996, Neuroreport.

[13]  J. Kauer Response patterns of amphibian olfactory bulb neurones to odour stimulation , 1974, The Journal of physiology.

[14]  W. Precht The synaptic organization of the brain G.M. Shepherd, Oxford University Press (1975). 364 pp., £3.80 (paperback) , 1976, Neuroscience.

[15]  Gordon M Shepherd,et al.  Membrane and synaptic properties of mitral cells in slices of rat olfactory bulb , 1997, Brain Research.

[16]  G M Shepherd,et al.  Dendrodendritic synaptic pathway for inhibition in the olfactory bulb. , 1966, Experimental neurology.

[17]  W. N. Ross,et al.  The spread of Na+ spikes determines the pattern of dendritic Ca2+ entry into hippocampal neurons , 1992, Nature.

[18]  July , 1890, The Hospital.

[19]  G. Shepherd,et al.  Impulse activity in presynaptic dendrites: analysis of mitral cells in the isolated turtle olfactory bulb , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[20]  Mnh,et al.  Histologie du Système Nerveux de Lʼhomme et des Vertébrés , 1998 .

[21]  D. Prince,et al.  Sodium channels in dendrites of rat cortical pyramidal neurons. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[22]  D. Johnston,et al.  A Synaptically Controlled, Associative Signal for Hebbian Plasticity in Hippocampal Neurons , 1997, Science.

[23]  W. N. Ross,et al.  IPSPs modulate spike backpropagation and associated [Ca2+]i changes in the dendrites of hippocampal CA1 pyramidal neurons. , 1996, Journal of neurophysiology.

[24]  W. D. Ehmann,et al.  Chemical Composition of Sawdust from Lunar Rock 12013 and Comparison of a Java Tektite with the Rock , 1972, Science.

[25]  N. Spruston,et al.  Action potential initiation and backpropagation in neurons of the mammalian CNS , 1997, Trends in Neurosciences.

[26]  J. Barker,et al.  The site for initiation of action potential discharge over the somatodendritic axis of rat hippocampal CA1 pyramidal neurons , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[27]  J. Kauer,et al.  Intracellular potentials of salamander mitral/tufted neurons in response to odor stimulation , 1985, Brain Research.

[28]  A. Mccarthy Development , 1996, Current Opinion in Neurobiology.

[29]  R. Nicoll,et al.  An intracellular analysis of dendrodendritic inhibition in the turtle in vitro olfactory bulb , 1982, The Journal of physiology.

[30]  Bert Sakmann,et al.  Axonal initiation and active dendritic propagation of action potentials in substantia nigra neurons , 1995, Neuron.

[31]  D. Kleinfeld,et al.  In vivo dendritic calcium dynamics in neocortical pyramidal neurons , 1997, Nature.

[32]  E. Kandel,et al.  ELECTROPHYSIOLOGY OF HIPPOCAMPAL NEURONS: IV. FAST PREPOTENTIALS. , 1961, Journal of neurophysiology.

[33]  Clay M. Armstrong,et al.  Dendritic Function: Where does it all begin? , 1994, Current Biology.

[34]  G. Shepherd,et al.  Theoretical reconstruction of field potentials and dendrodendritic synaptic interactions in olfactory bulb. , 1968, Journal of neurophysiology.