High temperature creep and low cycle fatigue of a nickel-base superalloy

[1]  R. Reed,et al.  Damage accumulation during creep deformation of a single crystal superalloy at 1150 °C , 2007 .

[2]  Lanzhang Zhou,et al.  High Temperature Creep Deformation Mechanisms of a Hot Corrosion-Resistant Nickel-based Superalloy , 2007, Journal of Materials Engineering and Performance.

[3]  A. Saxena,et al.  Low cycle fatigue in rene 88DT at 650 °C: Crack nucleation mechanisms and modeling , 2006 .

[4]  P. F. Browning,et al.  Hold time effects on low cycle fatigue behavior of HAYNES 230® superalloy at high temperatures , 2005 .

[5]  A. K. Tieu,et al.  High-temperature creep-deformation behavior of the Ni-based superalloy M963 , 2005 .

[6]  Du-yi Ye,et al.  Effect of cyclic straining at elevated-temperature on static mechanical properties, microstructures and fracture behavior of nickel-based superalloy GH4145/SQ , 2005 .

[7]  Z. Yue,et al.  A low-cycle fatigue life model of nickel-based single crystal superalloys under multiaxial stress state , 2005 .

[8]  H. Harada,et al.  Deformation microstructures after low-cycle fatigue in a fourth-generation Ni-base SC superalloy TMS-138 , 2004 .

[9]  W. W. Milligan,et al.  Effects of deformation behavior on fatigue fracture surface morphology in a nickel-base superalloy , 2004 .

[10]  B. Décamps,et al.  Low cycle fatigue of a nickel based superalloy at high temperature: deformation microstructures , 2001, 2110.05984.

[11]  D. W. Maclachlan,et al.  Anisotropic creep in CMSX-4 in orientations distant from 〈001〉 , 2000 .

[12]  T. Link,et al.  Increase of misfit during creep of superalloys and its correlation with deformation , 2000 .

[13]  B. Yang,et al.  Thermographic detection of fatigue damage of pressure vessel steels at 1,000 Hz and 20 Hz , 2000 .

[14]  U. Glatzel,et al.  Anisotropic creep properties of the nickel-base superalloy CMSX-4 , 1996 .

[15]  S. J. Moss,et al.  Creep deformation and crack growth behavior of a single-crystal nickel-base superalloy , 1996 .

[16]  D. Smith,et al.  HIGH TEMPERATURE FATIGUE‐CREEP BEHAVIOUR OF SINGLE CRYSTAL SRR90 NICKEL BASE SUPERALLOYS: PART 1—CYCLIC MECHANICAL RESPONSE , 1995 .

[17]  R. Pilkington,et al.  The Creep Fracture of a Single-Crystal Superalloy , 1993 .

[18]  M. Maldini,et al.  Creep fracture mechanisms in single crystal superalloys , 1992 .

[19]  M. Wen,et al.  Dislocation structure due to high temperature deformation in γ′ phase of a nickel-base superalloy , 1989 .

[20]  M. Nathal,et al.  The role of interfacial dislocation networks in high temperature creep of superalloys , 1989 .

[21]  T. Link,et al.  Correlation of microstructure and creep stages in the 〈100〉 oriented superalloy SRR 99 at 1253 K , 1989 .

[22]  M. Wen,et al.  Dislocation structure due to high temperature deformation in the γ′ phase of a nickel-based superalloy , 1989 .

[23]  T. Srivatsan,et al.  Cyclic stress response and deformation behaviour of precipitation-hardened aluminium-lithium alloys , 1986 .

[24]  V. Gerold,et al.  Room temperature deformation mechanisms in Nimonic 80A , 1985 .

[25]  K. Tanaka,et al.  Fatigue crack growth along planar slip bands , 1984 .

[26]  A. Pineau,et al.  Dislocation-precipitate interaction and cyclic stress-strain behavior of a γ′ strengthened superalloy , 1978 .

[27]  C. Carry,et al.  Apparent and effective creep parameters in single crystals of a nickel base superalloy—I Incubation period , 1977 .

[28]  L. Coffin,et al.  Low cycle fatigue hold time behavior of cast rené 80 , 1973 .

[29]  A. Argon,et al.  Creep resistance of CMSX-3 nickel base superalloy single crystals , 1992 .

[30]  T. Link,et al.  Shear mechanisms of the γ′ phase in single-crystal superalloys and their relation to creep , 1992 .

[31]  J. Hammer,et al.  Creep Deformation and Rupture Behaviour of the Monocrystalline Superalloy CMSX-4: A Comparison with the Alloy SRR 99 , 1992 .

[32]  A. Pineau,et al.  Low cycle fatigue of René 77 at elevated temperatures , 1981 .