CasFinder: Flexible algorithm for identifying specific Cas9 targets in genomes
暂无分享,去创建一个
[1] Melissa M. Harrison,et al. Genome Engineering of Drosophila with the CRISPR RNA-Guided Cas9 Nuclease , 2013, Genetics.
[2] J. Keith Joung,et al. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs , 2014, Nature Biotechnology.
[3] Prashant Mali,et al. Orthogonal Cas9 Proteins for RNA-Guided Gene Regulation and Editing , 2013, Nature Methods.
[4] E. Lander,et al. Genetic Screens in Human Cells Using the CRISPR-Cas9 System , 2013, Science.
[5] J. Doudna,et al. RNA-guided genetic silencing systems in bacteria and archaea , 2012, Nature.
[6] Le Cong,et al. Multiplex Genome Engineering Using CRISPR/Cas Systems , 2013, Science.
[7] George M. Church,et al. Multiplex and homologous recombination–mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9 , 2013, Nature Biotechnology.
[8] J. Keith Joung,et al. High frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells , 2013, Nature Biotechnology.
[9] Neville E. Sanjana,et al. Genome-Scale CRISPR-Cas9 Knockout Screening in Human Cells , 2014, Science.
[10] Morgan L. Maeder,et al. CRISPR RNA-guided activation of endogenous human genes , 2013, Nature Methods.
[11] Kira S. Makarova,et al. Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems , 2013, Nucleic acids research.
[12] James E. DiCarlo,et al. RNA-Guided Human Genome Engineering via Cas9 , 2013, Science.
[13] David R. Liu,et al. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity , 2013, Nature Biotechnology.
[14] Christopher M. Vockley,et al. RNA-guided gene activation by CRISPR-Cas9-based transcription factors , 2013, Nature Methods.
[15] Feng Zhang,et al. CRISPR-assisted editing of bacterial genomes , 2013, Nature Biotechnology.
[16] Mary Goldman,et al. The UCSC Genome Browser database: extensions and updates 2013 , 2012, Nucleic Acids Res..
[17] Luke A. Gilbert,et al. Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression , 2013, Cell.
[18] Mary Goldman,et al. The UCSC Genome Browser database: extensions and updates 2011 , 2011, Nucleic Acids Res..
[19] George M. Church,et al. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems , 2013, Nucleic acids research.
[20] Cole Trapnell,et al. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.
[21] George M. Church,et al. Heritable genome editing in C. elegans via a CRISPR-Cas9 system , 2013, Nature Methods.
[22] Jeffry D. Sander,et al. Efficient In Vivo Genome Editing Using RNA-Guided Nucleases , 2013, Nature Biotechnology.
[23] Wei Zhang,et al. Dynamic Imaging of Genomic Loci in Living Human Cells by an Optimized CRISPR/Cas System , 2014, Cell.
[24] Yilong Li,et al. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library , 2013, Nature Biotechnology.
[25] J. Doudna,et al. A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity , 2012, Science.
[26] Bo Zhang,et al. CasOT: a genome-wide Cas9/gRNA off-target searching tool , 2014, Bioinform..
[27] Tom H. Pringle,et al. The human genome browser at UCSC. , 2002, Genome research.
[28] Terrence S. Furey,et al. The UCSC Table Browser data retrieval tool , 2004, Nucleic Acids Res..
[29] Eli J. Fine,et al. DNA targeting specificity of RNA-guided Cas9 nucleases , 2013, Nature Biotechnology.
[30] Randall J. Platt,et al. Optical Control of Mammalian Endogenous Transcription and Epigenetic States , 2013, Nature.
[31] G. Church,et al. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering , 2013, Nature Biotechnology.