Xist RNA antagonizes the SWI/SNF chromatin remodeler BRG1 on the inactive X chromosome

[1]  P. Ellinor,et al.  An HDAC9-MALAT1-BRG1 complex mediates smooth muscle dysfunction in thoracic aortic aneurysm , 2018, Nature Communications.

[2]  Guo-Cheng Yuan,et al.  Economic and biophysical limits to seaweed farming for climate change mitigation , 2022, Nature Plants.

[3]  R. J. Kelleher,et al.  A mixed modality approach towards Xi reactivation for Rett syndrome and other X-linked disorders , 2017, Proceedings of the National Academy of Sciences.

[4]  Howard Y. Chang,et al.  Mechanistic insights in X-chromosome inactivation , 2017, Philosophical Transactions of the Royal Society B: Biological Sciences.

[5]  A. Wutz,et al.  Progress in understanding the molecular mechanism of Xist RNA function through genetics , 2017, Philosophical Transactions of the Royal Society B: Biological Sciences.

[6]  A. Tanay,et al.  Multiscale 3D Genome Rewiring during Mouse Neural Development , 2017, Cell.

[7]  Erez Lieberman Aiden,et al.  Cohesin Loss Eliminates All Loop Domains , 2017, Cell.

[8]  Wai Lim Ku,et al.  SMARCB1 is required for widespread BAF complex-mediated activation of enhancers and bivalent promoters , 2017, Nature Genetics.

[9]  Alaguraj Veluchamy,et al.  The Arabidopsis SWI/SNF protein BAF60 mediates seedling growth control by modulating DNA accessibility , 2017, Genome Biology.

[10]  J. Gribnau,et al.  X chromosome inactivation: silencing, topology and reactivation. , 2017, Current opinion in cell biology.

[11]  Jeannie T. Lee,et al.  The X chromosome in space , 2017, Nature Reviews Genetics.

[12]  Jason D. Buenrostro,et al.  TOP2 synergizes with BAF chromatin remodeling for both resolution and formation of facultative heterochromatin , 2017, Nature Structural &Molecular Biology.

[13]  Z. Zeng,et al.  Linking long non-coding RNAs and SWI/SNF complexes to chromatin remodeling in cancer , 2017, Molecular Cancer.

[14]  Jeannie T. Lee,et al.  Screen for reactivation of MeCP2 on the inactive X chromosome identifies the BMP/TGF-β superfamily as a regulator of XIST expression , 2017, Proceedings of the National Academy of Sciences.

[15]  Jeannie T. Lee,et al.  A high-throughput small molecule screen identifies synergism between DNA methylation and Aurora kinase pathways for X reactivation , 2016, Proceedings of the National Academy of Sciences.

[16]  C. Disteche Dosage compensation of the sex chromosomes and autosomes. , 2016, Seminars in cell & developmental biology.

[17]  Howard Y. Chang,et al.  Structural organization of the inactive X chromosome in the mouse , 2016, Nature.

[18]  Neva C. Durand,et al.  Deletion of DXZ4 on the human inactive X chromosome alters higher-order genome architecture , 2016, Proceedings of the National Academy of Sciences.

[19]  Vijender Singh,et al.  The Chromatin Remodelling Enzymes SNF2H and SNF2L Position Nucleosomes adjacent to CTCF and Other Transcription Factors , 2016, PLoS genetics.

[20]  David R. Kelley,et al.  Widespread RNA binding by chromatin-associated proteins , 2016, Genome Biology.

[21]  Z. Yakhini,et al.  Systematic discovery of cap-independent translation sequences in human and viral genomes , 2016, Science.

[22]  Jean-Christophe Aude,et al.  Genome-wide nucleosome specificity and function of chromatin remodellers in ES cells , 2015, Nature.

[23]  Howard Y. Chang,et al.  A novel ATAC-seq approach reveals lineage-specific reinforcement of the open chromatin landscape via cooperation between BAF and p63 , 2015, Genome Biology.

[24]  M. Pellegrini,et al.  A high-throughput screen of inactive X chromosome reactivation identifies the enhancement of DNA demethylation by 5-aza-2′-dC upon inhibition of ribonucleotide reductase , 2015, Epigenetics & Chromatin.

[25]  Thomas Cremer,et al.  The 4D nucleome: Evidence for a dynamic nuclear landscape based on co‐aligned active and inactive nuclear compartments , 2015, FEBS letters.

[26]  René A. M. Dirks,et al.  Dynamics of gene silencing during X inactivation using allele-specific RNA-seq , 2015, Genome Biology.

[27]  Brian S. Clark,et al.  Evf2 lncRNA/BRG1/DLX1 interactions reveal RNA-dependent inhibition of chromatin remodeling , 2015, Development.

[28]  Jeannie T. Lee,et al.  Chromosomes. A comprehensive Xist interactome reveals cohesin repulsion and an RNA-directed chromosome conformation. , 2015, Science.

[29]  Qiangfeng Cliff Zhang,et al.  Systematic Discovery of Xist RNA Binding Proteins , 2015, Cell.

[30]  Michael J. Sweredoski,et al.  The Xist lncRNA directly interacts with SHARP to silence transcription through HDAC3 , 2015, Nature.

[31]  Y. Ohkawa,et al.  SWI/SNF chromatin-remodeling complexes function in noncoding RNA-dependent assembly of nuclear bodies , 2015, Proceedings of the National Academy of Sciences.

[32]  William Stafford Noble,et al.  Escape from X Inactivation Varies in Mouse Tissues , 2015, PLoS genetics.

[33]  Neva C. Durand,et al.  A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping , 2014, Cell.

[34]  D. Reinberg,et al.  Nascent RNA interaction keeps PRC2 activity poised and in check , 2014, Genes & development.

[35]  Michael R. Green,et al.  Genetic and pharmacological reactivation of the mammalian inactive X chromosome , 2014, Proceedings of the National Academy of Sciences.

[36]  Jeannie T. Lee,et al.  Regulatory interactions between RNA and polycomb repressive complex 2. , 2014, Molecular cell.

[37]  A. Sidow,et al.  Maternal bias and escape from X chromosome imprinting in the midgestation mouse placenta. , 2014, Developmental biology.

[38]  Fidel Ramírez,et al.  deepTools: a flexible platform for exploring deep-sequencing data , 2014, Nucleic Acids Res..

[39]  Thomas Cremer,et al.  Three-dimensional super-resolution microscopy of the inactive X chromosome territory reveals a collapse of its active nuclear compartment harboring distinct Xist RNA foci , 2014, Epigenetics & Chromatin.

[40]  J. Nathans,et al.  Cellular Resolution Maps of X Chromosome Inactivation: Implications for Neural Development, Function, and Disease , 2014, Neuron.

[41]  Koichiro Tamura,et al.  MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. , 2013, Molecular biology and evolution.

[42]  Sarah K. Bowman,et al.  High-resolution Xist binding maps reveal 2-step spreading during X-inactivation , 2013, Nature.

[43]  H. Kimura,et al.  Human inactive X chromosome is compacted through a PRC2-independent SMCHD1-HBiX1 pathway , 2013, Nature Structural &Molecular Biology.

[44]  Bas van Steensel,et al.  Genome Architecture: Domain Organization of Interphase Chromosomes , 2013, Cell.

[45]  Cole Trapnell,et al.  TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions , 2013, Genome Biology.

[46]  M. Rudnicki,et al.  Genome-wide identification of enhancers in skeletal muscle: the role of MyoD1. , 2012, Genes & development.

[47]  Wei Sun,et al.  Site-Specific Silencing of Regulatory Elements as a Mechanism of X Inactivation , 2012, Cell.

[48]  Emmanuel Barillot,et al.  HiTC - Exploration of High Throughput ’C’ experiments , 2013 .

[49]  Taro L. Saito,et al.  Genome-wide genetic variations are highly correlated with proximal DNA methylation patterns , 2012, Genome research.

[50]  J. Sedat,et al.  Spatial partitioning of the regulatory landscape of the X-inactivation centre , 2012, Nature.

[51]  Jesse R. Dixon,et al.  Topological Domains in Mammalian Genomes Identified by Analysis of Chromatin Interactions , 2012, Nature.

[52]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[53]  Toshiro K. Ohsumi,et al.  Spreading of X chromosome inactivation via a hierarchy of defined Polycomb stations , 2012, Genome research.

[54]  Yi Tang,et al.  A tumor suppressor function of Smurf2 associated with controlling chromatin landscape and genome stability through RNF20 , 2011, Nature Medicine.

[55]  Jeannie T. Lee Gracefully ageing at 50, X-chromosome inactivation becomes a paradigm for RNA and chromatin control , 2011, Nature Reviews Molecular Cell Biology.

[56]  Jeannie T. Lee,et al.  YY1 Tethers Xist RNA to the Inactive X Nucleation Center , 2011, Cell.

[57]  W. V. van IJcken,et al.  The inactive X chromosome adopts a unique three-dimensional conformation that is dependent on Xist RNA. , 2011, Genes & development.

[58]  Timothy L. Bailey,et al.  Gene expression Advance Access publication May 4, 2011 DREME: motif discovery in transcription factor ChIP-seq data , 2011 .

[59]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer , 2011, Nature Biotechnology.

[60]  Tao Ye,et al.  seqMINER: an integrated ChIP-seq data interpretation platform , 2010, Nucleic acids research.

[61]  C. Glass,et al.  Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. , 2010, Molecular cell.

[62]  Aaron R. Quinlan,et al.  BIOINFORMATICS APPLICATIONS NOTE , 2022 .

[63]  I. Amit,et al.  Comprehensive mapping of long range interactions reveals folding principles of the human genome , 2011 .

[64]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[65]  Mikael Bodén,et al.  MEME Suite: tools for motif discovery and searching , 2009, Nucleic Acids Res..

[66]  Jeannie T. Lee,et al.  Polycomb Proteins Targeted by a Short Repeat RNA to the Mouse X Chromosome , 2008, Science.

[67]  Jeannie T. Lee,et al.  Perinucleolar Targeting of the Inactive X during S Phase: Evidence for a Role in the Maintenance of Silencing , 2007, Cell.

[68]  Panayiotis V. Benos,et al.  STAMP: a web tool for exploring DNA-binding motif similarities , 2007, Nucleic Acids Res..

[69]  Jun Song,et al.  CEAS: cis-regulatory element annotation system , 2006, Nucleic Acids Res..

[70]  Huntington F Willard,et al.  Multiple spatially distinct types of facultative heterochromatin on the human inactive X chromosome. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[71]  Z. Weng,et al.  Detection of functional DNA motifs via statistical over-representation. , 2004, Nucleic acids research.

[72]  Hengbin Wang,et al.  Role of Histone H3 Lysine 27 Methylation in X Inactivation , 2003, Science.

[73]  R. Shiekhattar,et al.  A chromatin remodelling complex that loads cohesin onto human chromosomes , 2002, Nature.

[74]  C. Allis,et al.  Methylation of Histone H3 at Lys-9 Is an Early Mark on the X Chromosome during X Inactivation , 2001, Cell.

[75]  R. Kingston,et al.  Generation and interconversion of multiple distinct nucleosomal states as a mechanism for catalyzing chromatin fluidity. , 2001, Molecular cell.

[76]  R. Jaenisch,et al.  A shift from reversible to irreversible X inactivation is triggered during ES cell differentiation. , 2000, Molecular cell.

[77]  R. Jaenisch,et al.  Conditional deletion of Xist disrupts histone macroH2A localization but not maintenance of X inactivation , 1999, Nature Genetics.

[78]  R. Kingston,et al.  Reconstitution of a core chromatin remodeling complex from SWI/SNF subunits. , 1999, Molecular cell.

[79]  T. Richmond,et al.  Preparation of nucleosome core particle from recombinant histones. , 1999, Methods in enzymology.

[80]  C. Costanzi,et al.  Histone macroH2A1 is concentrated in the inactive X chromosome of female mammals , 1998, Nature.

[81]  J. Mcneil,et al.  XIST RNA paints the inactive X chromosome at interphase: evidence for a novel RNA involved in nuclear/chromosome structure , 1996, The Journal of cell biology.