Urea homogeneous nucleation mechanism is solvent dependent.

The composition of the mother phase plays a primary role in crystallization processes, affecting both crystal nucleation and growth. In this work, the influence of solvents on urea nucleation has been investigated by means of enhanced sampling molecular dynamics simulations. We find that, depending on the solvent, the nucleation process can either follow a single-step or a two-step mechanism. While in methanol and ethanol a single-step nucleation process is favored, in acetonitrile a two-step process emerges as the most likely nucleation pathway. We also find that solvents have a minor impact on polymorphic transitions in the early stages of urea nucleation. The impact of finite size effects on the free energy surfaces is systematically considered and discussed in relation to the simulation setup.

[1]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[2]  V. Santen The Ostwald step rule , 1984 .

[3]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[4]  W. Peukert,et al.  An improved generalized AMBER force field (GAFF) for urea , 2010, Journal of molecular modeling.

[5]  M. Parrinello,et al.  A time-independent free energy estimator for metadynamics. , 2015, The journal of physical chemistry. B.

[6]  Michele Parrinello,et al.  Transient Polymorphism in NaCl. , 2013, Journal of Chemical Theory and Computation.

[7]  Carsten Kutzner,et al.  GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. , 2008, Journal of chemical theory and computation.

[8]  M. Parrinello,et al.  A molecular dynamics study of the early stages of calcium carbonate growth. , 2009, The journal of physical chemistry. B.

[9]  Dimo Kashchiev,et al.  Nucleation : basic theory with applications , 2000 .

[10]  Carl Caleman,et al.  GROMACS molecule & liquid database , 2012, Bioinform..

[11]  S. Piana,et al.  Understanding the barriers to crystal growth: dynamical simulation of the dissolution and growth of urea from aqueous solution. , 2005, Journal of the American Chemical Society.

[12]  D. Zahn Atomistic mechanism of NaCl nucleation from an aqueous solution. , 2004, Physical review letters.

[13]  J. Schmelzer,et al.  Comments on the thermodynamic analysis of nucleation in confined space , 2014 .

[14]  J. Christoffersen,et al.  Relation between interfacial surface tension of electrolyte crystals in aqueous suspension and their solubility; a simple derivation based on surface nucleation , 1991 .

[15]  B. Peters Competing nucleation pathways in a mixture of oppositely charged colloids: out-of-equilibrium nucleation revisited. , 2009, The Journal of chemical physics.

[16]  M. Doherty,et al.  Modeling the Crystal Shape of Polar Organic Materials: Prediction of Urea Crystals Grown from Polar and Nonpolar Solvents , 2001 .

[17]  Antony J. Williams,et al.  Open Notebook Science Challenge Solubilities of Organic Compounds in , 2010 .

[18]  Rosalind J Allen,et al.  Forward flux sampling for rare event simulations , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[19]  Michele Parrinello,et al.  1,3,5-Tris(4-bromophenyl)benzene prenucleation clusters from metadynamics. , 2014, Acta crystallographica. Section C, Structural chemistry.

[20]  V. Pande,et al.  Absolute comparison of simulated and experimental protein-folding dynamics , 2002, Nature.

[21]  R. Davey,et al.  Nucleation of organic crystals--a molecular perspective. , 2012, Angewandte Chemie.

[22]  Michele Parrinello,et al.  Freezing of a Lennard-Jones fluid: from nucleation to spinodal regime. , 2006, Physical review letters.

[23]  Andrew E. Torda,et al.  Local elevation: A method for improving the searching properties of molecular dynamics simulation , 1994, J. Comput. Aided Mol. Des..

[24]  D. Frenkel,et al.  Prediction of absolute crystal-nucleation rate in hard-sphere colloids , 2001, Nature.

[25]  A. Voter A method for accelerating the molecular dynamics simulation of infrequent events , 1997 .

[26]  Stéphane Veesler,et al.  Reaching One Single and Stable Critical Cluster through Finite-Sized Systems , 2009 .

[27]  Jörg Behler,et al.  Fast Crystallization of the Phase Change Compound GeTe by Large-Scale Molecular Dynamics Simulations. , 2013, The journal of physical chemistry letters.

[28]  Marco Mazzotti,et al.  Controlling and predicting crystal shapes: the case of urea. , 2013, Angewandte Chemie.

[29]  Erik E. Santiso,et al.  A general set of order parameters for molecular crystals. , 2011, The Journal of chemical physics.

[30]  S. Piana,et al.  Simulating micrometre-scale crystal growth from solution , 2005, Nature.

[31]  J. Anwar,et al.  Uncovering molecular processes in crystal nucleation and growth by using molecular simulation. , 2011, Angewandte Chemie.

[32]  Fu-Ming Lee,et al.  Solubility of urea in water-alcohol mixtures , 1972 .

[33]  David Reguera,et al.  Phase transitions in systems small enough to be clusters , 2003 .

[34]  Marco Mazzotti,et al.  Slowing the Growth Rate of Ibuprofen Crystals Using the Polymeric Additive Pluronic F127 , 2011 .

[35]  Stéphane Veesler,et al.  The Evolution of Crystal Shape During Dissolution: Predictions and Experiments , 2008 .

[36]  Junmei Wang,et al.  Development and testing of a general amber force field , 2004, J. Comput. Chem..

[37]  Marco Mazzotti,et al.  Molecular-dynamics simulations of urea nucleation from aqueous solution , 2014, Proceedings of the National Academy of Sciences.

[38]  M. Doherty,et al.  Homogeneous nucleation of methane hydrates: unrealistic under realistic conditions. , 2012, Journal of the American Chemical Society.

[39]  D. Frenkel,et al.  Enhancement of protein crystal nucleation by critical density fluctuations. , 1997, Science.

[40]  Marco Mazzotti,et al.  Insight into the nucleation of urea crystals from the melt , 2015 .

[41]  Michele Parrinello,et al.  Metadynamics studies of crystal nucleation , 2015, IUCrJ.

[42]  R. Popovitz‐Biro,et al.  Understanding and control of nucleation, growth, habit, dissolution and structure of two‐ and three‐dimensional crystals using `tailor‐made' auxiliaries , 1995 .

[43]  M. Parrinello,et al.  Well-tempered metadynamics: a smoothly converging and tunable free-energy method. , 2008, Physical review letters.

[44]  Massimiliano Bonomi,et al.  Reconstructing the equilibrium Boltzmann distribution from well‐tempered metadynamics , 2009, J. Comput. Chem..

[45]  Berk Hess,et al.  LINCS: A linear constraint solver for molecular simulations , 1997 .

[46]  Michael F. Doherty,et al.  A New Model for the Effect of Molecular Imposters on the Shape of Faceted Molecular Crystals , 2009 .

[47]  Alfons Mersmann,et al.  Calculation of interfacial tensions , 1990 .

[48]  Marco Mazzotti,et al.  Uncovering molecular details of urea crystal growth in the presence of additives. , 2012, Journal of the American Chemical Society.

[49]  E. Boek,et al.  Prediction of crystal growth morphology based on structural analysis of the solid–fluid interface , 1995, Nature.

[50]  Patrick Duchstein,et al.  Nucleation Mechanisms of a Polymorphic Molecular Crystal: Solvent-Dependent Structural Evolution of Benzamide Aggregates , 2014 .

[51]  L. Addadi,et al.  Molecular Recognition at Crystal Interfaces , 1991, Science.

[52]  Grubmüller,et al.  Predicting slow structural transitions in macromolecular systems: Conformational flooding. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[53]  K. Roberts,et al.  Theoretical analysis of the polar morphology and absolute polarity of crystalline urea , 1993 .

[54]  J. Mccammon,et al.  Sampling of slow diffusive conformational transitions with accelerated molecular dynamics. , 2007, The Journal of chemical physics.

[55]  Massimiliano Bonomi,et al.  PLUMED: A portable plugin for free-energy calculations with molecular dynamics , 2009, Comput. Phys. Commun..

[56]  J. Brickmann,et al.  An atomistic simulation scheme for modeling crystal formation from solution. , 2006, The Journal of chemical physics.

[57]  C. Dellago,et al.  Reaction coordinates of biomolecular isomerization. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[58]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .

[59]  M. Parrinello,et al.  Canonical sampling through velocity rescaling. , 2007, The Journal of chemical physics.

[60]  B. Trout,et al.  Nucleation from Solution , 2013, Science.

[61]  Narayan Variankaval,et al.  From Form to Function: Crystallization of Active Pharmaceutical Ingredients , 2008 .

[62]  David Reguera,et al.  Finite-size effects in simulations of nucleation. , 2006, The Journal of chemical physics.

[63]  Michele Parrinello,et al.  Well-tempered metadynamics converges asymptotically. , 2014, Physical review letters.

[64]  O. Söhnel,et al.  Interfacial tensions electrolyte crystal-aqueous solution, from nucleation data , 1971 .

[65]  A. Laio,et al.  Escaping free-energy minima , 2002, Proceedings of the National Academy of Sciences of the United States of America.