Applications of Generalized Zero-Effort-Miss/Zero-Effort-Velocity Feedback Guidance Algorithm

The performance of the zero-effort-miss/zero-effort-velocity feedback guidance algorithm is evaluated through practical space application examples. The zero-effort-miss/zero-effort-velocity feedback guidance algorithm is, in general, not an optimal solution; however, it is an optimal solution in a uniform gravitational environment. It is also conceptually simple and easy to implement and, thus, has great potential for autonomous onboard implementation. It is shown that, for some classic ballistic missile intercept and asteroid intercept scenarios, the zero-effort-miss/zero-effort-velocity algorithm can even compete with corresponding open-loop optimal solutions, while its feedback characteristics make it more suitable to deal with uncertainties and perturbations. By employing the zero-effort-miss/zero-effort-velocity algorithm in the highly nonlinear orbital transfer and raising problems and comparing with corresponding open-loop optimal solutions, its simplicity and near-optimality are further verified.

[1]  Paul Zarchan,et al.  Tactical and strategic missile guidance , 1990 .

[2]  Roberto Furfaro,et al.  Non-linear Sliding Guidance algorithms for precision lunar landing , 2011 .

[3]  I. Michael Ross,et al.  First Flight Results on Time-Optimal Spacecraft Slews , 2012 .

[4]  Gamal N. Elnagar,et al.  The pseudospectral Legendre method for discretizing optimal control problems , 1995, IEEE Trans. Autom. Control..

[5]  S. Vadali,et al.  Optimal Nonlinear Feedback Control Design Using a Waypoint Method , 2011 .

[6]  Bong Wie,et al.  AAS 11-271 IMPACT-ANGLE CONTROL OF ASTEROID INTERCEPTORS/PENETRATORS , 2011 .

[7]  R. Battin An introduction to the mathematics and methods of astrodynamics , 1987 .

[8]  Bong Wie,et al.  Terminal-Phase Guidance and Control Analysis of Asteroid Interceptors , 2010 .

[9]  Anil V. Rao,et al.  Optimal Reconfiguration of Spacecraft Formations Using the Gauss Pseudospectral Method , 2008 .

[10]  Behrouz Ebrahimi,et al.  Optimal sliding-mode guidance with terminal velocity constraint for fixed-interval propulsive maneuvers , 2008 .

[11]  Joseph Z. Ben-Asher,et al.  Optimal control theory with aerospace applications , 2010 .

[12]  Christopher N. D'Souza,et al.  AN OPTIMAL GUIDANCE LAW FOR PLANETARY LANDING , 1997 .

[13]  Arthur E. Bryson,et al.  Applied Optimal Control , 1969 .

[14]  J. Meditch,et al.  Applied optimal control , 1972, IEEE Transactions on Automatic Control.

[15]  Yanning Guo,et al.  Waypoint-Optimized Zero-Effort-Miss/Zero-Effort-Velocity Feedback Guidance for Mars Landing , 2013 .

[16]  Zhengyu Song,et al.  Application of optimal zero-effect-miss/zero-effect-velocity feedback guidance in hazard avoidance for planetary landing , 2014, Proceedings of 2014 IEEE Chinese Guidance, Navigation and Control Conference.

[17]  Yanning Guo,et al.  AAS 11-531 GUIDANCE ALGORITHMS FOR ASTEROID INTERCEPT MISSIONS WITH PRECISION TARGETING REQUIREMENTS , 2011 .

[18]  Jules Simo,et al.  Development of non-linear guidance algorithms for asteroids close-proximity operations , 2013 .

[19]  Anil V. Rao,et al.  Algorithm 902: GPOPS, A MATLAB software for solving multiple-phase optimal control problems using the gauss pseudospectral method , 2010, TOMS.