Schr\"odinger-Heisenberg Variational Quantum Algorithms

Recent breakthroughs have opened the possibility to intermediate-scale quantum computing with tens to hundreds of qubits, and shown the potential for solving classical challenging problems, such as in chemistry and condensed matter physics. However, the extremely high accuracy needed to surpass classical computers poses a critical demand to the circuit depth, which is severely limited by the non-negligible gate infidelity, currently around 0.1-1%. Here, by incorporating a virtual Heisenberg circuit, which acts effectively on the measurement observables, to a real shallow Schr\"odinger circuit, which is implemented realistically on the quantum hardware, we propose a paradigm of Schr\"odinger-Heisenberg variational quantum algorithms to resolve this problem. We choose a Clifford virtual circuit, whose effect on the Hamiltonian can be efficiently and classically implemented according to the Gottesman-Knill theorem. Yet, it greatly enlarges the state expressivity, realizing much larger unitary t-designs. Our method enables accurate quantum simulation and computation that otherwise is only achievable with much deeper and more accurate circuits conventionally. This has been verified in our numerical experiments for a better approximation of random states and a higher-fidelity solution to the ground state energy of the XXZ model. Together with effective quantum error mitigation, our work paves the way for realizing accurate quantum computing algorithms with near-term quantum devices.

[1]  Haibin Zhang,et al.  Quantum computational advantage via 60-qubit 24-cycle random circuit sampling. , 2021, Science bulletin.

[2]  Chang-Yu Hsieh,et al.  Variational Quantum-Neural Hybrid Eigensolver. , 2021, Physical review letters.

[3]  Patrick J. Coles,et al.  Connecting ansatz expressibility to gradient magnitudes and barren plateaus , 2021, PRX Quantum.

[4]  Chang-Yu Hsieh,et al.  Differentiable quantum architecture search , 2020, Quantum Science and Technology.

[5]  Hao Li,et al.  Phase-Programmable Gaussian Boson Sampling Using Stimulated Squeezed Light. , 2021, Physical review letters.

[6]  Haibin Zhang,et al.  Strong Quantum Computational Advantage Using a Superconducting Quantum Processor. , 2021, Physical review letters.

[7]  M. Cerezo,et al.  Variational quantum algorithms , 2020, Nature Reviews Physics.

[8]  Keisuke Fujii,et al.  Qulacs: a fast and versatile quantum circuit simulator for research purpose , 2020, Quantum.

[9]  Jason Iaconis,et al.  Quantum State Complexity in Computationally Tractable Quantum Circuits , 2020, PRX Quantum.

[10]  P. Barkoutsos,et al.  Quantum HF/DFT-embedding algorithms for electronic structure calculations: Scaling up to complex molecular systems. , 2020, The Journal of chemical physics.

[11]  Qi Zhao,et al.  Quantum Simulation with Hybrid Tensor Networks. , 2020, Physical review letters.

[12]  David Gosset,et al.  Classical algorithms for quantum mean values , 2019, Nature Physics.

[13]  Jian-Wei Pan,et al.  Quantum computational advantage using photons , 2020, Science.

[14]  Xiao Yuan,et al.  Hybrid Quantum-Classical Algorithms and Quantum Error Mitigation , 2020, Journal of the Physical Society of Japan.

[15]  M. Sayyafzadeh,et al.  An accelerated gradient algorithm for well control optimization , 2020 .

[16]  K. B. Whaley,et al.  A non-orthogonal variational quantum eigensolver , 2019, New Journal of Physics.

[17]  Ryan Babbush,et al.  Increasing the Representation Accuracy of Quantum Simulations of Chemistry without Extra Quantum Resources , 2019, Physical Review X.

[18]  Alán Aspuru-Guzik,et al.  Quantum computational chemistry , 2018, Reviews of Modern Physics.

[19]  Yuya O. Nakagawa,et al.  Orbital optimized unitary coupled cluster theory for quantum computer , 2019, 1910.11526.

[20]  John C. Platt,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[21]  W. W. Ho,et al.  Efficient variational simulation of non-trivial quantum states , 2018, SciPost Physics.

[22]  H. Neven,et al.  Barren plateaus in quantum neural network training landscapes , 2018, Nature Communications.

[23]  Andrew W. Cross,et al.  The IBM Q experience and QISKit open-source quantum computing software , 2018 .

[24]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[25]  S. Lloyd,et al.  Entanglement, quantum randomness, and complexity beyond scrambling , 2017, Journal of High Energy Physics.

[26]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[27]  J. Gambetta,et al.  Tapering off qubits to simulate fermionic Hamiltonians , 2017, 1701.08213.

[28]  Kristan Temme,et al.  Error Mitigation for Short-Depth Quantum Circuits. , 2016, Physical review letters.

[29]  Ying Li,et al.  Efficient Variational Quantum Simulator Incorporating Active Error Minimization , 2016, 1611.09301.

[30]  Huangjun Zhu Multiqubit Clifford groups are unitary 3-designs , 2015, 1510.02619.

[31]  Markus Grassl,et al.  The Clifford group fails gracefully to be a unitary 4-design , 2016, 1609.08172.

[32]  F. Brandão,et al.  Local Random Quantum Circuits are Approximate Polynomial-Designs , 2016, Communications in Mathematical Physics.

[33]  Alán Aspuru-Guzik,et al.  The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.

[34]  M. Hastings,et al.  Progress towards practical quantum variational algorithms , 2015, 1507.08969.

[35]  Xie Chen,et al.  Quantum circuit complexity of one-dimensional topological phases , 2014, 1401.3820.

[36]  Fernando G. S. L. Brandão,et al.  Exponential Decay of Correlations Implies Area Law , 2012, Communications in Mathematical Physics.

[37]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[38]  F. Brandão,et al.  Exponential Decay of Correlations Implies Area Law , 2014, Communications in Mathematical Physics.

[39]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[40]  Xiao-Gang Wen,et al.  Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order , 2010, 1004.3835.

[41]  F. Verstraete,et al.  Lieb-Robinson bounds and the generation of correlations and topological quantum order. , 2006, Physical review letters.

[42]  J. Eisert,et al.  Entanglement in Graph States and its Applications , 2006, quant-ph/0602096.

[43]  Xiao-Gang Wen,et al.  Detecting topological order in a ground state wave function. , 2005, Physical review letters.

[44]  J. Preskill,et al.  Topological entanglement entropy. , 2005, Physical review letters.

[45]  G. Vidal,et al.  Ground state entanglement in quantum spin chains , 2003, Quantum Inf. Comput..

[46]  G. Vidal,et al.  Entanglement in quantum critical phenomena. , 2002, Physical review letters.

[47]  L. Landau,et al.  Fermionic quantum computation , 2000 .

[48]  D. Gottesman The Heisenberg Representation of Quantum Computers , 1998, quant-ph/9807006.

[49]  R. Feynman Simulating physics with computers , 1999 .

[50]  S. G. Hoggar,et al.  t-Designs in Projective Spaces , 1982, Eur. J. Comb..