Effects of the solar wind and the solar EUV flux on O+ escape rates from Venus

[1]  S. Barabash,et al.  H+/O+ Escape Rate Ratio in the Venus Magnetotail and its Dependence on the Solar Cycle , 2018, Geophysical Research Letters.

[2]  S. Barabash,et al.  Solar Wind Interaction and Impact on the Venus Atmosphere , 2017, Space Science Reviews.

[3]  S. Barabash,et al.  Ablation of Venusian oxygen ions by unshocked solar wind. , 2017, Science bulletin.

[4]  Y. Futaana,et al.  Properties of planetward ion flows in Venus’ magnetotail , 2016 .

[5]  K. Szego,et al.  Statistical features of the global polarity reversal of the Venusian induced magnetosphere in response to the polarity change in interplanetary magnetic field , 2016 .

[6]  M. Liemohn,et al.  Comparative pick-up ion distributions at Mars and Venus: Consequences for atmospheric deposition and escape , 2015 .

[7]  S. Barabash,et al.  The flapping motion of the Venusian magnetotail: Venus Express observations , 2015 .

[8]  S. Barabash,et al.  Technique for diagnosing the flapping motion of magnetotail current sheets based on single‐point magnetic field analysis , 2015 .

[9]  S. Barabash,et al.  Morphology of magnetic field in near‐Venus magnetotail: Venus express observations , 2014 .

[10]  S. Barabash,et al.  Plasma in the near Venus tail: Venus Express observations , 2013 .

[11]  S. Barabash,et al.  Venus ion outflow estimates at solar minimum: Influence of reference frames and disturbed solar wind conditions , 2013 .

[12]  Naoki Terada,et al.  Dependence of O+ escape rate from the Venusian upper atmosphere on IMF directions , 2013 .

[13]  C. Russell,et al.  Magnetic Reconnection in the Near Venusian Magnetotail , 2012, Science.

[14]  H. Lammer,et al.  The Kelvin–Helmholtz instability at Venus: What is the unstable boundary? , 2011, Icarus.

[15]  S. Barabash,et al.  O+ outflow channels around Venus controlled by directions of the interplanetary magnetic field: Observations of high energy O+ ions around the terminator , 2011 .

[16]  M. Lester,et al.  Atmospheric erosion of Venus during stormy space weather , 2011 .

[17]  R. Lundin Ion Acceleration and Outflow from Mars and Venus: An Overview , 2011 .

[18]  C. Ferrier,et al.  Measurements of the ion escape rates from Venus for solar minimum , 2011 .

[19]  I. Pater,et al.  Interplanetary coronal mass ejection influence on high energy pick-up ions at Venus , 2010 .

[20]  A. Coates,et al.  Plasma environment of Jupiter family comets , 2009 .

[21]  H. Lichtenegger,et al.  Plasma environment of Venus: Comparison of Venus Express ASPERA‐4 measurements with 3‐D hybrid simulations , 2007 .

[22]  C. Russell,et al.  The loss of ions from Venus through the plasma wake , 2007, Nature.

[23]  Christopher T. Russell,et al.  Space weather at Venus and its potential consequences for atmosphere evolution , 2007 .

[24]  M. Maggi,et al.  The Analyser of Space Plasmas and Energetic Atoms (ASPERA-4) for the Venus Express mission , 2007 .

[25]  Jean-Pierre Lebreton,et al.  Magnetic field investigation of the Venus plasma environment: Expected new results from Venus Express , 2006 .

[26]  Wolfgang Baumjohann,et al.  Survey of large-amplitude flapping motions in the midtail current sheet , 2006, Annales Geophysicae.

[27]  J. Luhmann,et al.  Solar cycle effects on the structure of the electron density profiles in the dayside ionosphere of venus , 1991 .

[28]  C. Russell,et al.  The ionotail of Venus: Its configuration and evidence for ion escape , 1987 .

[29]  J. Luhmann The solar wind interaction with Venus , 1986 .

[30]  J. Mihalov,et al.  The distant interplanetary wake of Venus: Plasma observations from Pioneer Venus , 1982 .

[31]  J. Luhmann,et al.  Holes in the nightside ionosphere of Venus , 1982 .

[32]  L. H. Brace,et al.  Plasma clouds above the ionopause of Venus and their implications , 1982 .