Combinatorial solutions to coagulation kernel for linear chains

[1]  Minmin Wang,et al.  A new combinatorial representation of the additive coalescent , 2019, Random Struct. Algorithms.

[2]  A. Fronczak,et al.  Exact Combinatorial Approach to Finite Coagulating Systems Through Recursive Equations , 2018, Reports on Mathematical Physics.

[3]  A. Fronczak,et al.  Coagulation with product kernel and arbitrary initial conditions: Exact kinetics within the Marcus-Lushnikov framework. , 2018, Physical review. E.

[4]  A. Fronczak,et al.  Exact combinatorial approach to finite coagulating systems. , 2017, Physical review. E.

[5]  A. Meunier,et al.  Kinetics of internal structures growth in magnetic suspensions , 2013 .

[6]  I. Ford,et al.  Coagulation kinetics beyond mean field theory using an optimised Poisson representation. , 2012, The Journal of chemical physics.

[7]  P. Grassberger,et al.  Exact solutions for mass-dependent irreversible aggregations. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Peter Grassberger,et al.  Irreversible aggregation and network renormalization , 2010, 1011.0944.

[9]  Tianming Wang,et al.  General identities on Bell polynomials , 2009, Comput. Math. Appl..

[10]  J. Wattis,et al.  Similarity solution of coagulation equation with an inverse kernel , 2009 .

[11]  Lushnikov Aa,et al.  Gelation in coagulating systems , 2006 .

[12]  F. Leyvraz Scaling theory for gelling systems : Work in progress , 2006 .

[13]  Jonathan A. D. Wattis,et al.  An introduction to mathematical models of coagulation–fragmentation processes: A discrete deterministic mean-field approach , 2006 .

[14]  Paul Taylor,et al.  Investigation of the touch sensitivity of ER fluid based tactile display , 2005, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[15]  D. G. McCartney,et al.  Coagulation equations with mass loss , 2004 .

[16]  F. Leyvraz Scaling theory and exactly solved models in the kinetics of irreversible aggregation , 2003, cond-mat/0305670.

[17]  J. Wattis,et al.  A comparison of different models for mechanical alloying , 2001 .

[18]  S. Melle,et al.  Time scaling regimes in aggregation of magnetic dipolar particles: scattering dichroism results. , 2001, Physical review letters.

[19]  D. Aldous Deterministic and stochastic models for coalescence (aggregation and coagulation): a review of the mean-field theory for probabilists , 1999 .

[20]  G. J. Monkman,et al.  Exploitation of compressive stress in electrorheological coupling , 1997 .

[21]  J. L. Sproston,et al.  Applications of electro-rheological fluids in vibration control: a survey , 1996 .

[22]  Oliver Penrose,et al.  Proof of dynamical scaling in Smoluchowski's coagulation equation with constant kernel , 1994 .

[23]  Gareth J. Monkman,et al.  An Electrorheological Tactile Display , 1992, Presence: Teleoperators & Virtual Environments.

[24]  A. J. Simmonds,et al.  Electro-rheological valves in a hydraulic circuit , 1991 .

[25]  Meyer,et al.  Electric-field-induced association of colloidal particles. , 1989, Physical review letters.

[26]  Meakin,et al.  Aggregation of oriented anisotropic particles. , 1987, Physical review. A, General physics.

[27]  M. H. Ernst,et al.  On the occurrence of a gelation transition in Smoluchowski's coagulation equation , 1986 .

[28]  M. Schreckenberg,et al.  Exact solutions for random coagulation processes , 1985 .

[29]  Harvey Gould,et al.  Kinetics of Aggregation and Gelation , 1985 .

[30]  Robert M. Ziff,et al.  Coagulation equations with gelation , 1983 .

[31]  Robert M. Ziff,et al.  Kinetics of polymer gelation , 1980 .

[32]  Warren H. White,et al.  A global existence theorem for Smoluchowski’s coagulation equations , 1980 .

[33]  J. Klett,et al.  Microphysics of Clouds and Precipitation , 1978, Nature.

[34]  A. A Lushnikov,et al.  Coagulation in finite systems , 1978 .

[35]  Reuel Shinnar,et al.  The Extent of Correlations in a Stochastic Coalescence Process , 1974 .

[36]  W. M. Winslow Induced Fibration of Suspensions , 1949 .

[37]  Walter H. Stockmayer,et al.  Theory of Molecular Size Distribution and Gel Formation in Branched‐Chain Polymers , 1943 .

[38]  Colin P. Reynolds Field induced assembly of paramagnetic colloidal particles , 2016 .

[39]  S. Redner,et al.  A Kinetic View of Statistical Physics , 2010 .

[40]  Zineb Mimouni Cinétique d agrégation en chaînes dans une suspension colloïdale soumise à un champ électrique alternatif , 2007 .

[41]  Jean Bertoin,et al.  Random fragmentation and coagulation processes , 2006 .

[42]  J. Pitman Combinatorial Stochastic Processes , 2006 .

[43]  Carsten Wiuf,et al.  Gene Genealogies, Variation and Evolution - A Primer in Coalescent Theory , 2004 .

[44]  Wook-Bae Kim,et al.  The electromechanical principle of electrorheological fluid-assisted polishing , 2003 .

[45]  R. Pego,et al.  Mathematik in den Naturwissenschaften Leipzig Approach to self-similarity in Smoluchowski ’ s coagulation equations , 2003 .

[46]  B. Vincent,et al.  Coagulation kinetics and structure formation , 1987 .

[47]  L. Comtet,et al.  Advanced Combinatorics: The Art of Finite and Infinite Expansions , 1974 .