Branching and interacting particle systems. Approximations of Feynman-Kac formulae with applications to non-linear filtering

This paper focuses on interacting particle systems methods for solving numerically a class of Feynman-Kac formulae arising in the study of certain parabolic differential equations, physics, biology, evolutionary computing, nonlinear filtering and elsewhere. We have tried to give an “expose” of the mathematical theory that is useful for analyzing the convergence of such genetic-type and particle approximating models including law of large numbers, large deviations principles, fluctuations and empirical process theory as well as semigroup techniques and limit theorems for processes.

[1]  R. Dobrushin Central Limit Theorem for Nonstationary Markov Chains. II , 1956 .

[2]  R. L. Stratonovich CONDITIONAL MARKOV PROCESSES , 1960 .

[3]  A. Shiryaev Addendum: On Stochastic Equations in the Theory of Conditional Markov Processes , 1967 .

[4]  G. Kallianpur,et al.  Stochastic Differential Equations Occurring in the Estimation of Continuous Parameter Stochastic Processes , 1969 .

[5]  H. Kunita Asymptotic behavior of the nonlinear filtering errors of Markov processes , 1971 .

[6]  H. Kunita,et al.  Stochastic differential equations for the non linear filtering problem , 1972 .

[7]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[8]  D. W. Stroock,et al.  Multidimensional Diffusion Processes , 1979 .

[9]  B. Simon Trace ideals and their applications , 1979 .

[10]  D. Ocone Topics in Nonlinear Filtering Theory. , 1980 .

[11]  V. Benes Exact finite-dimensional filters for certain diffusions with nonlinear drift , 1981 .

[12]  A. Mandelbaum,et al.  Symmetric Statistics, Poisson Point Processes, and Multiple Wiener Integrals , 1983 .

[13]  D. Michel,et al.  Des resultats de non existence de filtre de dimension finie , 1984 .

[14]  Hiroshi Tanaka Limit Theorems for Certain Diffusion Processes with Interaction , 1984 .

[15]  F. Gland Monte-Carlo methods in nonlinear filtering and importance sampling , 1984, The 23rd IEEE Conference on Decision and Control.

[16]  D. Stroock An Introduction to the Theory of Large Deviations , 1984 .

[17]  Denis Talay,et al.  Efficient numerical schemes for the approximation of expectations of functionals of the solution of a S.D.E., and applications , 1984 .

[18]  H. Korezlioglu,et al.  Modelization and filtering of discrete systems and discrete approximation of continuous systems , 1984 .

[19]  J. Picard Approximation of nonlinear filtering problems and order of convergence , 1984 .

[20]  S. Kusuoka,et al.  Gibbs measures for mean field potentials , 1984 .

[21]  D. Talay,et al.  Discretization and simulation of stochastic differential equations , 1985 .

[22]  Wolfgang J. Runggaldier,et al.  An approximation for the nonlinear filtering problem, with error bound † , 1985 .

[23]  Hiroshi Tanaka,et al.  Central limit theorem for a system of Markovian particles with mean field interactions , 1985 .

[24]  James E. Baker,et al.  Adaptive Selection Methods for Genetic Algorithms , 1985, International Conference on Genetic Algorithms.

[25]  E. Bolthausen Laplace approximations for sums of independent random vectors , 1986 .

[26]  Jean Picard,et al.  Nonlinear filtering of one-dimensional diffusions in the case of a high signal-to-noise ratio , 1986 .

[27]  D. E. Goldberg,et al.  Simple Genetic Algorithms and the Minimal, Deceptive Problem , 1987 .

[28]  David E. Goldberg,et al.  An Analysis of Reproduction and Crossover in a Binary-Coded Genetic Algorithm , 1987, ICGA.

[29]  P. Donnelly MARKOV PROCESSES Characterization and Convergence (Wiley Series in Probability and Mathematical Statistics) , 1987 .

[30]  A. Shiryaev,et al.  Limit Theorems for Stochastic Processes , 1987 .

[31]  David E. Goldberg,et al.  Finite Markov Chain Analysis of Genetic Algorithms , 1987, ICGA.

[32]  A H Korezlioglu,et al.  Computation of Filters by Sampling and Quantization. , 1987 .

[33]  Erwin Bolthausen,et al.  Laplace approximations for sums of independent random vectors , 1987 .

[34]  James E. Baker,et al.  Reducing Bias and Inefficienry in the Selection Algorithm , 1987, ICGA.

[35]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[36]  Decision Systems.,et al.  Lyapunov Exponents for Filtering Problems , 1988 .

[37]  E. Davies,et al.  Heat kernels and spectral theory , 1989 .

[38]  L. Stettner On invariant measures of filtering processes , 1989 .

[39]  Alʹbert Nikolaevich Shiri︠a︡ev,et al.  Theory of martingales , 1989 .

[40]  F. Gland,et al.  Time discretization of nonlinear filtering equations , 1989 .

[41]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[42]  G. B. Arous,et al.  Methode de laplace: etude variationnelle des fluctuations de diffusions de type , 1990 .

[43]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[44]  Ł. Stettner Invariant measures of the pair: state, approximate filtering process , 1991 .

[45]  É. Pardoux,et al.  Filtrage Non Lineaire Et Equations Aux Derivees Partielles Stochastiques Associees , 1991 .

[46]  Kenneth S. Alexander,et al.  Spatial Stochastic Processes , 1991 .

[47]  David Williams,et al.  Probability with Martingales , 1991, Cambridge mathematical textbooks.

[48]  H. Kunita Ergodic Properties of Nonlinear Filtering Processes , 1991 .

[49]  Jim Freeman Probability Metrics and the Stability of Stochastic Models , 1991 .

[50]  J. W. Kwiatkowski Algorithms for index tracking , 1992 .

[51]  Donald A. Dawson,et al.  Measure-valued Markov processes , 1993 .

[52]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[53]  David Abramson,et al.  Computing optimal schedules for landing aircraft , 1993 .

[54]  W. Runggaldier,et al.  Filtering for nonlinear systems driven by nonwhite noises:an approximation scheme , 1993 .

[55]  Anastasios G. Bakirtzis,et al.  Genetic algorithm solution to the economic dispatch problem , 1994 .

[56]  D. Bakry L'hypercontractivité et son utilisation en théorie des semigroupes , 1994 .

[57]  R. S. Bucy Lectures on Discrete Time Filtering , 1994 .

[58]  R. Cerf Une théorie asymptotique des algorithmes génétiques , 1994 .

[59]  M. Talagrand Sharper Bounds for Gaussian and Empirical Processes , 1994 .

[60]  Dan Boneh,et al.  On genetic algorithms , 1995, COLT '95.

[61]  Marc Schoenauer,et al.  Genetic Algorithms for Automatic Regrouping of Air Traffic Control Sectors , 1995, Evolutionary Programming.

[62]  P. Bertail,et al.  The Weighted Bootstrap , 1995 .

[63]  Del Moral,et al.  1 - Résolution particulaire et traitement non-linéaire du signal : applications RADAR/SONAR , 1995 .

[64]  H.F. Durrant-Whyte,et al.  A new approach for filtering nonlinear systems , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[65]  F. Gland,et al.  An Adaptive Local Grid Refinement Method for Nonlinear Filtering , 1995 .

[66]  Asymptotic ergodicity for the Zakai filtering equation. , 1995 .

[67]  G. Kitagawa Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models , 1996 .

[68]  J. M. Johnson,et al.  Genetic algorithms in electromagnetics , 1996, IEEE Antennas and Propagation Society International Symposium. 1996 Digest.

[69]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[70]  D. Ocone,et al.  Asymptotic Stability of the Optimal Filter with Respect toIts Initial Condition , 1996 .

[71]  S. Méléard Asymptotic behaviour of some interacting particle systems; McKean-Vlasov and Boltzmann models , 1996 .

[72]  Marc Schoenauer,et al.  Mechanical inclusions identification by evolutionary computation , 1996 .

[73]  H. Teicher,et al.  Central Limit Theorems , 1997 .

[74]  A. Budhiraja,et al.  Exponential stability of discrete-time filters for bounded observation noise , 1997 .

[75]  R. Atar,et al.  Lyapunov Exponents for Finite State Nonlinear Filtering , 1997 .

[76]  C. Graham,et al.  Stochastic particle approximations for generalized Boltzmann models and convergence estimates , 1997 .

[77]  R. Atar,et al.  Exponential stability for nonlinear filtering , 1997 .

[78]  C. SIAMJ. LYAPUNOV EXPONENTS FOR FINITE STATE NONLINEAR FILTERING , 1997 .

[79]  P. Moral Nonlinear filtering : Interacting particle resolution , 1997 .

[80]  Y. Nishiyama Some central limit theorems for ℓ∞-valued semimartingales and their applications , 1997 .

[81]  Marc Schoenauer,et al.  Identification of Mechanical Inclusions , 1997 .

[82]  H. Carvalho,et al.  Optimal nonlinear filtering in GPS/INS integration , 1997, IEEE Transactions on Aerospace and Electronic Systems.

[83]  P. Djurić,et al.  A fast-weighted Bayesian bootstrap filter for nonlinear model state estimation , 1997, IEEE Transactions on Aerospace and Electronic Systems.

[84]  D. Crisan,et al.  Nonlinear filtering and measure-valued processes , 1997 .

[85]  Amir Dembo,et al.  Large Deviations Techniques and Applications , 1998 .

[86]  P. Moral Measure-valued processes and interacting particle systems. Application to nonlinear filtering problems , 1998 .

[87]  P. Moral A uniform convergence theorem for the numerical solving of the nonlinear filtering problem , 1998 .

[88]  P. Moral,et al.  Large deviations for interacting particle systems: Applications to non-linear filtering , 1998 .

[89]  D. Crisan,et al.  A particle approximation of the solution of the Kushner–Stratonovitch equation , 1999 .

[90]  Dan Crisan,et al.  Convergence of a Branching Particle Method to the Solution of the Zakai Equation , 1998, SIAM J. Appl. Math..

[91]  S. R. S. Varadhan Large Deviations for Interacting Particle Systems , 1999 .

[92]  P. Moral,et al.  Interacting particle systems approximations of the Kushner-Stratonovitch equation , 1999, Advances in Applied Probability.

[93]  P. Moral,et al.  Central limit theorem for nonlinear filtering and interacting particle systems , 1999 .

[94]  P. Moral,et al.  On the stability of measure valued processes with applications to filtering , 1999 .

[95]  Michael D. Vose,et al.  The simple genetic algorithm - foundations and theory , 1999, Complex adaptive systems.

[96]  P. Moral,et al.  On the Convergence and the Applications of the Generalized Simulated Annealing , 1999 .

[97]  M. Ledoux,et al.  Convergence of Empirical Processes for Interacting Particle Systems with Applications to Nonlinear Filtering , 2000 .

[98]  Laurent Miclo,et al.  A Moran particle system approximation of Feynman-Kac formulae , 2000 .

[99]  Jean Jacod,et al.  Interacting Particle Filtering With Discrete Observations , 2001, Sequential Monte Carlo Methods in Practice.

[100]  P. Protter,et al.  The Monte-Carlo method for filtering with discrete-time observations , 2001 .

[101]  J. Shapcott Index Tracking : Genetic Algorithms for Investment Portfolio Selection , 2002 .