Scaling limits and stochastic homogenization for some nonlinear parabolic equations
暂无分享,去创建一个
Panagiotis E. Souganidis | Pierre Cardaliaguet | Nicolas Dirr | P. Souganidis | P. Cardaliaguet | N. Dirr
[1] T. Komorowski,et al. On homogenization of time-dependent random flows , 2001 .
[2] A. Pankov,et al. Individual homogenization of nonlinear parabolic operators , 2006 .
[3] A. Fannjiang,et al. An Invariance Principle for Diffusion in Turbulence , 1999 .
[4] François Delarue,et al. Stochastic homogenization of quasilinear PDEs with a spatial degeneracy , 2009, Asymptot. Anal..
[5] C. Landim,et al. Convection–diffusion equation with space–time ergodic random flow , 1998 .
[6] S. Armstrong,et al. Quantitative stochastic homogenization and regularity theory of parabolic equations , 2017, Analysis & PDE.
[7] S. Varadhan,et al. Homogenization of Hamilton‐Jacobi‐Bellman equations with respect to time‐space shifts in a stationary ergodic medium , 2008 .
[8] H. Spohn,et al. Motion by Mean Curvature from the Ginzburg-Landau Interface Model , 1997 .
[9] N. Krylov,et al. Lectures on Elliptic and Parabolic Equations in Holder Spaces , 1996 .
[10] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[11] J. Lions. Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .
[12] R. Rhodes. On homogenization of space–time dependent and degenerate random flows , 2007 .
[13] Yalchin Efendiev,et al. Numerical Homogenization of Nonlinear Random Parabolic Operators , 2004, Multiscale Model. Simul..