Border collision bifurcations in one-dimensional linear-hyperbolic maps

Abstract: In this paper we consider a continuous one-dimensional map, which is linear on one side of a generic kink point and hyperbolic on the other side. This kind of map is widely used in the applied context. Due to the simple expression of the two functions involved, in particular cases it is possible to determine analytically the border collision bifurcation curves that characterize the dynamic behaviors of the model. In the more general model we show that the steps to be performed are the same, although the analytical expressions are not given in explicit form.

[1]  Celso Grebogi,et al.  Border collision bifurcations in two-dimensional piecewise smooth maps , 1998, chao-dyn/9808016.

[2]  Erik Mosekilde,et al.  Quasiperiodicity and torus breakdown in a power electronic dc/dc converter , 2007, Math. Comput. Simul..

[3]  Michael Schanz,et al.  Codimension-three bifurcations: explanation of the complex one-, two-, and three-dimensional bifurcation structures in nonsmooth maps. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  Tönu Puu,et al.  Business Cycle Dynamics : Models and Tools , 2006 .

[5]  Steven R. Bishop,et al.  Bifurcations in impact oscillations , 1994 .

[6]  R. Day Irregular Growth Cycles , 2016 .

[7]  Leon O. Chua,et al.  Cycles of Chaotic Intervals in a Time-delayed Chua's Circuit , 1993, Chua's Circuit.

[8]  Laura Gardini,et al.  Degenerate bifurcations and Border Collisions in Piecewise Smooth 1D and 2D Maps , 2010, Int. J. Bifurc. Chaos.

[9]  Laura Gardini,et al.  Global Bifurcations in a Three-Dimensional Financial Model of Bull and Bear Interactions , 2010 .

[10]  Michael Schanz,et al.  On multi-parametric bifurcations in a scalar piecewise-linear map , 2006 .

[11]  Arne Nordmark,et al.  Non-periodic motion caused by grazing incidence in an impact oscillator , 1991 .

[12]  H. Dankowicz,et al.  On the origin and bifurcations of stick-slip oscillations , 2000 .

[13]  James A. Yorke,et al.  Border-collision bifurcations including “period two to period three” for piecewise smooth systems , 1992 .

[14]  Laura Gardini,et al.  Center bifurcation for Two-Dimensional Border-Collision Normal Form , 2008, Int. J. Bifurc. Chaos.

[15]  Volodymyr L. Maistrenko,et al.  On period-adding sequences of attracting cycles in piecewise linear maps , 1998 .

[16]  Leon O. Chua,et al.  BIFURCATIONS OF ATTRACTING CYCLES FROM TIME-DELAYED CHUA’S CIRCUIT , 1995 .

[17]  George C. Verghese,et al.  Nonlinear Phenomena in Power Electronics , 2001 .

[18]  Richard H. Day,et al.  Complex economic dynamics , 1994 .

[19]  Soumitro Banerjee,et al.  Robust Chaos , 1998, chao-dyn/9803001.

[20]  Iryna Sushko,et al.  Business Cycle Dynamics , 2006 .

[21]  Laura Gardini,et al.  Growing through chaotic intervals , 2008, J. Econ. Theory.

[22]  C. Budd,et al.  Review of ”Piecewise-Smooth Dynamical Systems: Theory and Applications by M. di Bernardo, C. Budd, A. Champneys and P. 2008” , 2020 .

[23]  James D. Meiss,et al.  Neimark-Sacker Bifurcations in Planar, Piecewise-Smooth, Continuous Maps , 2008, SIAM J. Appl. Dyn. Syst..

[24]  Character of the map for switched dynamical systems for observations on the switching manifold , 2008 .

[25]  Mario di Bernardo,et al.  C-bifurcations and period-adding in one-dimensional piecewise-smooth maps , 2003 .

[26]  Somnath Maity,et al.  Border collision route to quasiperiodicity: Numerical investigation and experimental confirmation. , 2006, Chaos.

[27]  Laura Gardini,et al.  Bifurcation structure of parameter plane for a family of unimodal piecewise smooth maps: Border-collision bifurcation curves , 2006 .

[28]  Ott,et al.  Border-collision bifurcations: An explanation for observed bifurcation phenomena. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[29]  James A. Yorke,et al.  BORDER-COLLISION BIFURCATIONS FOR PIECEWISE SMOOTH ONE-DIMENSIONAL MAPS , 1995 .

[30]  Ekaterina Pavlovskaia,et al.  Experimental study of impact oscillator with one-sided elastic constraint , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[31]  Laura Gardini,et al.  BISTABILITY AND BORDER-COLLISION BIFURCATIONS FOR A FAMILY OF UNIMODAL PIECEWISE SMOOTH MAPS , 2005 .

[32]  G. Verghese,et al.  Nonlinear phenomena in power electronics : attractors, bifurcations, chaos, and nonlinear control , 2001 .

[33]  Erik Mosekilde,et al.  Bifurcations and chaos in piecewise-smooth dynamical systems , 2003 .

[34]  Stephen John Hogan,et al.  Local Analysis of C-bifurcations in n-dimensional piecewise smooth dynamical systems , 1999 .

[35]  C. Mira,et al.  Chaotic Dynamics: From the One-Dimensional Endomorphism to the Two-Dimensional Diffeomorphism , 1987 .

[36]  J. Yorke,et al.  Bifurcations in one-dimensional piecewise smooth maps-theory and applications in switching circuits , 2000 .

[37]  Michael Schanz,et al.  Influence of a square-root singularity on the behaviour of piecewise smooth maps , 2010 .

[38]  Richard H. Day,et al.  Statistical Dynamics and Economics , 1991 .

[39]  Laura Gardini,et al.  The emergence of bull and bear dynamics in a nonlinear model of interacting markets. , 2009 .

[40]  Tönu Puu,et al.  Oligopoly Dynamics : Models and Tools , 2002 .