A posteriori error control in low-order finite element discretisations of incompressible stationary flow problems

Computable a posteriori error bounds and related adaptive meshrefining algorithms are provided for the numerical treatment of monotone stationary flow problems with a quite general class of conforming and non-conforming finite element methods. A refined residual-based error estimate generalises the works of Verfurth; Dari, Duran and Padra; Bao and Barrett. As a consequence, reliable and efficient averaging estimates can be established on unstructured grids. The symmetric formulation of the incompressible flow problem models certain nonNewtonian flow problems and the Stokes problem with mixed boundary conditions. A Helmholtz decomposition avoids any regularity or saturation assumption in the mathematical error analysis. Numerical experiments for the partly nonconforming method analysed by Kouhia and Stenberg indicate efficiency of related adaptive mesh-refining algorithms.

[1]  R. Temam Navier-Stokes Equations , 1977 .

[2]  L. Hörmander Linear Partial Differential Operators , 1963 .

[3]  R. Verfürth,et al.  Edge Residuals Dominate A Posteriori Error Estimates for Low Order Finite Element Methods , 1999 .

[4]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[5]  Philippe G. Ciarlet,et al.  The Finite Element Method for Elliptic Problems. , 1981 .

[7]  R. Kouhia,et al.  A linear nonconforming finite element method for nearly incompressible elasticity and stokes flow , 1995 .

[8]  Carsten Carstensen,et al.  A posteriori error estimate for the mixed finite element method , 1997, Math. Comput..

[9]  Claes Johnson,et al.  Introduction to Adaptive Methods for Differential Equations , 1995, Acta Numerica.

[10]  John W. Barrett,et al.  A priori and a posteriori error bounds for a nonconforming linear finite element approximation of a non-newtonian flow , 1998 .

[11]  Randolph E. Bank,et al.  A posteriori error estimates for the Stokes problem , 1991 .

[12]  Claudio Padra,et al.  A Posteriori Error Estimators for Nonconforming Approximation of Some Quasi-Newtonian Flows , 1997 .

[13]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[14]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[15]  R. Durán,et al.  Error estimators for nonconforming finite element approximations of the Stokes problem , 1995 .

[16]  R. S. Falk,et al.  Equivalence of finite element methods for problems in elasticity , 1990 .

[17]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[18]  R. Verfürth A posteriori error estimators for the Stokes equations , 1989 .

[19]  C. Carstensen QUASI-INTERPOLATION AND A POSTERIORI ERROR ANALYSIS IN FINITE ELEMENT METHODS , 1999 .

[20]  Carsten Carstensen,et al.  A posteriori error estimates for mixed FEM in elasticity , 1998, Numerische Mathematik.

[21]  Rüdiger Verfürth,et al.  A posteriori error estimators for the Stokes equations II non-conforming discretizations , 1991 .

[22]  A. Alonso Error estimators for a mixed method , 1996 .

[23]  G. Fix Review: Philippe G. Ciarlet, The finite element method for elliptic problems , 1979 .

[24]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[25]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[26]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .