Transcriptome visualization and data availability at the Saccharomyces Genome Database

Abstract The Saccharomyces Genome Database (SGD; www.yeastgenome.org) maintains the official annotation of all genes in the Saccharomyces cerevisiae reference genome and aims to elucidate the function of these genes and their products by integrating manually curated experimental data. Technological advances have allowed researchers to profile RNA expression and identify transcripts at high resolution. These data can be configured in web-based genome browser applications for display to the general public. Accordingly, SGD has incorporated published transcript isoform data in our instance of JBrowse, a genome visualization platform. This resource will help clarify S. cerevisiae biological processes by furthering studies of transcriptional regulation, untranslated regions, genome engineering, and expression quantification in S. cerevisiae.

[1]  M. Ashe,et al.  Yeast mRNA localization: protein asymmetry, organelle localization and response to stress. , 2014, Biochemical Society transactions.

[2]  S. Jaspersen,et al.  Manipulating the yeast genome: deletion, mutation, and tagging by PCR. , 2014, Methods in molecular biology.

[3]  Hunter B. Fraser,et al.  Ab initio construction of a eukaryotic transcriptome by massively parallel mRNA sequencing , 2009, Proceedings of the National Academy of Sciences.

[4]  Audrey M. Michel,et al.  GWIPS-viz: 2018 update , 2017, Nucleic Acids Res..

[5]  M. Gerstein,et al.  The Transcriptional Landscape of the Yeast Genome Defined by RNA Sequencing , 2008, Science.

[6]  N. Friedman,et al.  Strand-specific RNA sequencing reveals extensive regulated long antisense transcripts that are conserved across yeast species , 2010, Genome Biology.

[7]  S. Loeillet,et al.  XUTs are a class of Xrn1-sensitive antisense regulatory non-coding RNA in yeast , 2011, Nature.

[8]  Isaac A. Babarinde,et al.  Computational Methods for Mapping, Assembly and Quantification for Coding and Non-coding Transcripts , 2019, Computational and structural biotechnology journal.

[9]  Christophe Malabat,et al.  Widespread bidirectional promoters are the major source of cryptic transcripts in yeast , 2009, Nature.

[10]  L. Steinmetz,et al.  Extensive transcriptional heterogeneity revealed by isoform profiling , 2013, Nature.

[11]  The Gene Ontology Consortium,et al.  The Gene Ontology Resource: 20 years and still GOing strong , 2018, Nucleic Acids Res..

[12]  Tae-Hyuk Ahn,et al.  YeasTSS: an integrative web database of yeast transcription start sites , 2019, bioRxiv.

[13]  Edith D. Wong,et al.  Saccharomyces Genome Database: the genomics resource of budding yeast , 2011, Nucleic Acids Res..

[14]  M. Hattori,et al.  A large-scale full-length cDNA analysis to explore the budding yeast transcriptome , 2006, Proceedings of the National Academy of Sciences.

[15]  Nuno A. Fonseca,et al.  ArrayExpress update – from bulk to single-cell expression data , 2018, Nucleic Acids Res..

[16]  Megan N. McClean,et al.  Single-cell RNA sequencing reveals intrinsic and extrinsic regulatory heterogeneity in yeast responding to stress , 2017, PLoS biology.

[17]  L. Steinmetz,et al.  Bidirectional promoters generate pervasive transcription in yeast , 2009, Nature.

[18]  James C. Hu,et al.  The Gene Ontology Resource: 20 years and still GOing strong , 2019 .

[19]  Jonathan McMillan,et al.  YeasTSS: An Integrative Web Database of Yeast Transcription Start Sites , 2019, Database J. Biol. Databases Curation.

[20]  P. Kapranov,et al.  Comprehensive Polyadenylation Site Maps in Yeast and Human Reveal Pervasive Alternative Polyadenylation , 2010, Cell.

[21]  Sean R. Davis,et al.  NCBI GEO: archive for functional genomics data sets—update , 2012, Nucleic Acids Res..

[22]  L. Steinmetz,et al.  Sensitive high-throughput single-cell RNA-Seq reveals within-clonal transcript-correlations in yeast populations , 2019, Nature Microbiology.

[23]  Achim Tresch,et al.  Dynamic transcriptome analysis measures rates of mRNA synthesis and decay in yeast , 2011, Molecular systems biology.

[24]  Suzanna E Lewis,et al.  JBrowse: a dynamic web platform for genome visualization and analysis , 2016, Genome Biology.

[25]  Edith D. Wong,et al.  The Reference Genome Sequence of Saccharomyces cerevisiae: Then and Now , 2013, G3: Genes, Genomes, Genetics.

[26]  F. Dietrich,et al.  Mapping of transcription start sites in Saccharomyces cerevisiae using 5′ SAGE , 2005, Nucleic acids research.

[27]  Vicent Pelechano,et al.  Genome-wide identification of transcript start and end sites by transcript isoform sequencing , 2014, Nature Protocols.

[28]  Nicholas T. Ingolia,et al.  Genome-Wide Analysis in Vivo of Translation with Nucleotide Resolution Using Ribosome Profiling , 2009, Science.

[29]  H. Ooi,et al.  Genome-wide profiling of untranslated regions by paired-end ditag sequencing reveals unexpected transcriptome complexity in yeast , 2015, Molecular Genetics and Genomics.

[30]  Frédéric Chalmel,et al.  Execution of the meiotic noncoding RNA expression program and the onset of gametogenesis in yeast require the conserved exosome subunit Rrp6 , 2010, Proceedings of the National Academy of Sciences.