Cell polarity and the cytoskeleton in the Caenorhabditis elegans zygote.

The anterior-posterior axis of the Caenorhabditis elegans zygote forms shortly after fertilization when the sperm pronucleus and its associated centrosomal asters provide a cue that establishes the anterior-posterior (AP) body axis. In response to this cue, the microfilament cytoskeleton polarizes the distribution of a group of widely conserved, cortically localized regulators called the PAR proteins, which are required for the first mitotic division to be asymmetric. These asymmetries include a posterior displacement of the first mitotic spindle and the differential segregation of cell-fate determinants to the anterior and posterior daughters produced by the first cleavage of the zygote. Here we review recent advances in our understanding of the mechanisms that polarize the one-cell zygote to generate an AP axis of asymmetry.

[1]  G. Seydoux,et al.  Exclusion of germ plasm proteins from somatic lineages by cullin-dependent degradation , 2003, Nature.

[2]  F. McNally,et al.  MEI-1/katanin is required for translocation of the meiosis I spindle to the oocyte cortex in C elegans. , 2003, Developmental biology.

[3]  Pierre Gönczy,et al.  Translation of Polarity Cues into Asymmetric Spindle Positioning in Caenorhabditis elegans Embryos , 2003, Science.

[4]  J. Ahringer,et al.  Asymmetrically Distributed C. elegans Homologs of AGS3/PINS Control Spindle Position in the Early Embryo , 2003, Current Biology.

[5]  T. C. Evans,et al.  Translational repression of a C. elegans Notch mRNA by the STAR/KH domain protein GLD-1 , 2003, Development.

[6]  Y. Kohara,et al.  Translational control of maternal glp-1 mRNA by POS-1 and its interacting protein SPN-4 in Caenorhabditis elegans , 2003, Development.

[7]  M. Peter,et al.  Neddylation and Deneddylation of CUL-3 Is Required to Target MEI-1/Katanin for Degradation at the Meiosis-to-Mitosis Transition in C. elegans , 2003, Current Biology.

[8]  S. van den Heuvel,et al.  A complex of LIN-5 and GPR proteins regulates G protein signaling and spindle function in C elegans. , 2003, Genes & development.

[9]  P. Gönczy,et al.  Differential Activation of the DNA Replication Checkpoint Contributes to Asynchrony of Cell Division in C. elegans Embryos , 2003, Current Biology.

[10]  J. Labbé,et al.  PAR Proteins Regulate Microtubule Dynamics at the Cell Cortex in C. elegans , 2003, Current Biology.

[11]  J. Schumacher,et al.  Developmental defects observed in hypomorphic anaphase-promoting complex mutants are linked to cell cycle abnormalities , 2003, Development.

[12]  B. Bowerman,et al.  Myosin and the PAR proteins polarize microfilament-dependent forces that shape and position mitotic spindles in Caenorhabditis elegans , 2003, The Journal of cell biology.

[13]  A. Schetter,et al.  Polarization of the C. elegans zygote proceeds via distinct establishment and maintenance phases , 2003, Development.

[14]  Lesilee S. Rose,et al.  PAR-dependent and geometry-dependent mechanisms of spindle positioning , 2003, The Journal of cell biology.

[15]  M. Glotzer,et al.  Centrosome separation and central spindle assembly act in redundant pathways that regulate microtubule density and trigger cleavage furrow formation. , 2003, Developmental cell.

[16]  R. Vale The Molecular Motor Toolbox for Intracellular Transport , 2003, Cell.

[17]  Sophie G. Martin,et al.  A role for Drosophila LKB1 in anterior–posterior axis formation and epithelial polarity , 2003, Nature.

[18]  P. Kuwabara The multifaceted C. elegans major sperm protein: an ephrin signaling antagonist in oocyte maturation. , 2003, Genes & development.

[19]  S. Hanks,et al.  An Eph receptor sperm-sensing control mechanism for oocyte meiotic maturation in Caenorhabditis elegans. , 2003, Genes & development.

[20]  W. Chia,et al.  Apical Complex Genes Control Mitotic Spindle Geometry and Relative Size of Daughter Cells in Drosophila Neuroblast and pI Asymmetric Divisions , 2003, Cell.

[21]  R. Kitagawa,et al.  The Cdc20 Homolog, FZY-1, and Its Interacting Protein, IFY-1, Are Required for Proper Chromosome Segregation in Caenorhabditis elegans , 2002, Current Biology.

[22]  D. Baillie,et al.  A Formin Homology Protein and a Profilin Are Required for Cytokinesis and Arp2/3-Independent Assembly of Cortical Microfilaments in C. elegans , 2002, Current Biology.

[23]  B. Bowerman,et al.  Centrosome maturation and mitotic spindle assembly in C. elegans require SPD-5, a protein with multiple coiled-coil domains. , 2002, Developmental cell.

[24]  Lesilee S. Rose,et al.  LET-99 determines spindle position and is asymmetrically enriched in response to PAR polarity cues in C. elegans embryos. , 2002, Development.

[25]  A. Hajnal,et al.  The C.elegans MAPK phosphatase LIP‐1 is required for the G2/M meiotic arrest of developing oocytes , 2002, The EMBO journal.

[26]  P. Sternberg,et al.  Caenorhabditis elegans inositol 5-phosphatase homolog negatively regulates inositol 1,4,5-triphosphate signaling in ovulation. , 2002, Molecular biology of the cell.

[27]  P. Gönczy,et al.  Cytoskeletal Regulation by the Nedd8 Ubiquitin-Like Protein Modification Pathway , 2002, Science.

[28]  A. Wodarz Establishing cell polarity in development , 2002, Nature Cell Biology.

[29]  B. Bowerman,et al.  The anaphase-promoting complex and separin are required for embryonic anterior-posterior axis formation. , 2002, Developmental cell.

[30]  A. Golden,et al.  Multiple subunits of the Caenorhabditis elegans anaphase-promoting complex are required for chromosome segregation during meiosis I. , 2002, Genetics.

[31]  M. Vidal,et al.  MEX-3 interacting proteins link cell polarity to asymmetric gene expression in Caenorhabditis elegans. , 2002, Development.

[32]  S. Siddiqui Metazoan Motor Models: Kinesin Superfamily inC. elegans , 2002, Traffic.

[33]  Anthony A. Hyman,et al.  Aurora-A kinase is required for centrosome maturation in Caenorhabditis elegans , 2001, The Journal of cell biology.

[34]  K. Nasmyth,et al.  Separase is required for chromosome segregation during meiosis I in Caenorhabditis elegans , 2001, Current Biology.

[35]  M. Glotzer,et al.  Animal cell cytokinesis. , 2001, Annual review of cell and developmental biology.

[36]  B. Bowerman,et al.  The maternal gene spn-4 encodes a predicted RRM protein required for mitotic spindle orientation and cell fate patterning in early C. elegans embryos. , 2001, Development.

[37]  J. Knoblich,et al.  Heterotrimeric G Proteins Direct Two Modes of Asymmetric Cell Division in the Drosophila Nervous System , 2001, Cell.

[38]  M. Han,et al.  Cytoplasmic dynein light intermediate chain is required for discrete aspects of mitosis in Caenorhabditis elegans. , 2001, Molecular biology of the cell.

[39]  P. Gönczy,et al.  zyg-8, a gene required for spindle positioning in C. elegans, encodes a doublecortin-related kinase that promotes microtubule assembly. , 2001, Developmental cell.

[40]  R. Lin,et al.  Two zinc finger proteins, OMA-1 and OMA-2, are redundantly required for oocyte maturation in C. elegans. , 2001, Developmental cell.

[41]  J. Ahringer,et al.  CDC-42 controls early cell polarity and spindle orientation in C. elegans , 2001, Current Biology.

[42]  C. Hunter,et al.  CDC-42 regulates PAR protein localization and function to control cellular and embryonic polarity in C. elegans , 2001, Current Biology.

[43]  R. Caprioli,et al.  A Sperm Cytoskeletal Protein That Signals Oocyte Meiotic Maturation and Ovulation , 2001, Science.

[44]  J. Priess,et al.  The C. elegans E2F- and DP-related proteins are required for embryonic asymmetry and negatively regulate Ras/MAPK signaling. , 2001, Molecular cell.

[45]  J. Ahringer,et al.  Distinct roles for Gα and Gβγ in regulating spindle position and orientation in Caenorhabditis elegans embryos , 2001, Nature Cell Biology.

[46]  A. Singson,et al.  Every sperm is sacred: fertilization in Caenorhabditis elegans. , 2001, Developmental biology.

[47]  Anthony A. Hyman,et al.  Polarity controls forces governing asymmetric spindle positioning in the Caenorhabditis elegans embryo , 2001, Nature.

[48]  C. Doe,et al.  Asymmetric cell division: fly neuroblast meets worm zygote. , 2001, Current opinion in cell biology.

[49]  J. Schumacher,et al.  Metaphase to Anaphase (mat) Transition–Defective Mutants inCaenorhabditis elegans , 2000, The Journal of cell biology.

[50]  K. Miller,et al.  A role for RIC-8 (Synembryn) and GOA-1 (G(o)alpha) in regulating a subset of centrosome movements during early embryogenesis in Caenorhabditis elegans. , 2000, Genetics.

[51]  G. Seydoux,et al.  Polarization of the anterior–posterior axis of C. elegans is a microtubule-directed process , 2000, Nature.

[52]  G. Seydoux,et al.  Asymmetric segregation of PIE-1 in C. elegans is mediated by two complementary mechanisms that act through separate PIE-1 protein domains. , 2000, Molecular cell.

[53]  P. Gönczy,et al.  Cyk-4 , 2000, The Journal of cell biology.

[54]  J. White,et al.  The spd-2 gene is required for polarization of the anteroposterior axis and formation of the sperm asters in the Caenorhabditis elegans zygote. , 2000, Developmental biology.

[55]  E. Hubbard,et al.  The Caenorhabditis elegans gonad: A test tube for cell and developmental biology , 2000, Developmental dynamics : an official publication of the American Association of Anatomists.

[56]  F. McNally,et al.  MEI-1/MEI-2 katanin-like microtubule severing activity is required for Caenorhabditis elegans meiosis. , 2000, Genes & development.

[57]  R. Lin,et al.  MEX-5 and MEX-6 function to establish soma/germline asymmetry in early C. elegans embryos. , 2000, Molecular cell.

[58]  R. Kitagawa,et al.  EMB-30: an APC4 homologue required for metaphase-to-anaphase transitions during meiosis and mitosis in Caenorhabditis elegans. , 2000, Molecular biology of the cell.

[59]  A. Shevchenko,et al.  A protein complex containing Inscuteable and the Gα-binding protein Pins orients asymmetric cell divisions in Drosophila , 2000, Current Biology.

[60]  D. Morton,et al.  The C. elegans par-4 gene encodes a putative serine-threonine kinase required for establishing embryonic asymmetry. , 2000, Development.

[61]  X. Morin,et al.  Analysis of partner of inscuteable, a Novel Player of Drosophila Asymmetric Divisions, Reveals Two Distinct Steps in Inscuteable Apical Localization , 2000, Cell.

[62]  D. Shakes,et al.  Anucleate Caenorhabditis elegans sperm can crawl, fertilize oocytes and direct anterior-posterior polarization of the 1-cell embryo. , 2000, Development.

[63]  H. Horvitz,et al.  Lin-5 Is a Novel Component of the Spindle Apparatus Required for Chromosome Segregation and Cleavage Plane Specification in Caenorhabditis elegans , 2000, The Journal of cell biology.

[64]  D. Longo,et al.  The polo‐like kinase PLK‐1 is required for nuclear envelope breakdown and the completion of meiosis in Caenorhabditis elegans , 2000, Genesis.

[65]  T. Miki,et al.  Human Ect2 Is an Exchange Factor for Rho Gtpases, Phosphorylated in G2/M Phases, and Involved in Cytokinesis , 1999, The Journal of cell biology.

[66]  C. W. Smith,et al.  The coronin-like protein POD-1 is required for anterior-posterior axis formation and cellular architecture in the nematode caenorhabditis elegans. , 1999, Genes & development.

[67]  P. Gönczy,et al.  Cytoplasmic Dynein Is Required for Distinct Aspects of Mtoc Positioning, Including Centrosome Separation, in the One Cell Stage Caenorhabditis elegans Embryo , 1999, The Journal of cell biology.

[68]  T. Roberts,et al.  Localized Depolymerization of the Major Sperm Protein Cytoskeleton Correlates with the Forward Movement of the Cell Body in the Amoeboid Movement of Nematode Sperm , 1999, The Journal of cell biology.

[69]  D. Siderovski,et al.  The GoLoco motif: a Galphai/o binding motif and potential guanine-nucleotide exchange factor. , 1999, Trends in biochemical sciences.

[70]  H. Bellen,et al.  A putative exchange factor for Rho1 GTPase is required for initiation of cytokinesis in Drosophila. , 1999, Genes & development.

[71]  S. Strome,et al.  Launching the germline in Caenorhabditis elegans: regulation of gene expression in early germ cells. , 1999, Development.

[72]  D. Hall,et al.  Ultrastructural features of the adult hermaphrodite gonad of Caenorhabditis elegans: relations between the germ line and soma. , 1999, Developmental biology.

[73]  B. Bowerman,et al.  The Nonmuscle Myosin Regulatory Light Chain Gene mlc-4 Is Required for Cytokinesis, Anterior-Posterior Polarity, and Body Morphology during Caenorhabditis elegans Embryogenesis , 1999, The Journal of cell biology.

[74]  M. Boxem,et al.  The Caenorhabditis elegans gene ncc-1 encodes a cdc2-related kinase required for M phase in meiotic and mitotic cell divisions, but not for S phase. , 1999, Development.

[75]  P. Gönczy,et al.  Dissection of Cell Division Processes in the One Cell Stage Caenorhabditis elegans Embryo by Mutational Analysis , 1999, The Journal of cell biology.

[76]  John G. White,et al.  The dynactin complex is required for cleavage plane specification in early Caenorhabditis elegans embryos , 1998, Current Biology.

[77]  F. Piano,et al.  Atypical protein kinase C cooperates with PAR-3 to establish embryonic polarity in Caenorhabditis elegans. , 1998, Development.

[78]  K. Kemphues,et al.  ZYG-9, A Caenorhabditis elegans Protein Required for Microtubule Organization and Function, Is a Component of Meiotic and Mitotic Spindle Poles , 1998, The Journal of cell biology.

[79]  Lesilee S. Rose,et al.  The let-99 gene is required for proper spindle orientation during cleavage of the C. elegans embryo. , 1998, Development.

[80]  P. Sternberg,et al.  Inositol Trisphosphate Mediates a RAS-Independent Response to LET-23 Receptor Tyrosine Kinase Activation in C. elegans , 1998, Cell.

[81]  D. Hall,et al.  The POU gene ceh-18 promotes gonadal sheath cell differentiation and function required for meiotic maturation and ovulation in Caenorhabditis elegans. , 1997, Developmental biology.

[82]  J. Priess,et al.  The C. elegans MEX-1 protein is present in germline blastomeres and is a P granule component. , 1997, Development.

[83]  J. McCarter,et al.  Soma-germ cell interactions in Caenorhabditis elegans: multiple events of hermaphrodite germline development require the somatic sheath and spermathecal lineages. , 1997, Developmental biology.

[84]  C. Hunter,et al.  Spatial and Temporal Controls Target pal-1 Blastomere-Specification Activity to a Single Blastomere Lineage in C. elegans Embryos , 1996, Cell.

[85]  C. Mello,et al.  MEX-3 Is a KH Domain Protein That Regulates Blastomere Identity in Early C. elegans Embryos , 1996, Cell.

[86]  K. Kemphues,et al.  PAR-2 is asymmetrically distributed and promotes association of P granules and PAR-1 with the cortex in C. elegans embryos. , 1996, Development.

[87]  K. Kemphues,et al.  par-6, a gene involved in the establishment of asymmetry in early C. elegans embryos, mediates the asymmetric localization of PAR-3. , 1996, Development.

[88]  J. Ahringer,et al.  G Proteins Are Required for Spatial Orientation of Early Cell Cleavages in C. elegans Embryos , 1996, Cell.

[89]  C. Mello,et al.  The PIE-1 protein and germline specification in C. elegans embryos , 1996, Nature.

[90]  A. Fire,et al.  Repression of gene expression in the embryonic germ lineage of C. elegans , 1996, Nature.

[91]  K. Kemphues,et al.  A non-muscle myosin required for embryonic polarity in Caenorhabditis elegans , 1996, Nature.

[92]  J. McCarter,et al.  emo-1, a Caenorhabditis elegans Sec61p gamma homologue, is required for oocyte development and ovulation , 1996, The Journal of cell biology.

[93]  Steven N. Hird,et al.  Specification of the anteroposterior axis in Caenorhabditis elegans. , 1996, Development.

[94]  Steven N. Hird,et al.  Segregation of germ granules in living Caenorhabditis elegans embryos: cell-type-specific mechanisms for cytoplasmic localisation. , 1996, Development.

[95]  H. Horvitz,et al.  EGL-10 Regulates G Protein Signaling in the C. elegans Nervous System and Shares a Conserved Domain with Many Mammalian Proteins , 1996, Cell.

[96]  T. Roberts,et al.  Reconstitution In Vitro of the Motile Apparatus from the Amoeboid Sperm of Ascaris Shows That Filament Assembly and Bundling Move Membranes , 1996, Cell.

[97]  K. Kemphues,et al.  Asymmetrically distributed PAR-3 protein contributes to cell polarity and spindle alignment in early C. elegans embryos , 1995, Cell.

[98]  K. Guan,et al.  Three genes of the MAP kinase cascade, mek-2, mpk-1/sur-1 and let-60 ras, are required for meiotic cell cycle progression in Caenorhabditis elegans. , 1995, Development.

[99]  K. Kemphues,et al.  par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed , 1995, Cell.

[100]  K. Kemphues,et al.  Control of cleavage spindle orientation in Caenorhabditis elegans: the role of the genes par-2 and par-3. , 1995, Genetics.

[101]  A. Fire,et al.  Soma-germline asymmetry in the distributions of embryonic RNAs in Caenorhabditis elegans. , 1994, Development.

[102]  J Kimble,et al.  lag-2 may encode a signaling ligand for the GLP-1 and LIN-12 receptors of C. elegans. , 1994, Development.

[103]  T. C. Evans,et al.  GLP-1 is localized to the mitotic region of the C. elegans germ line. , 1994, Development.

[104]  P. Mains,et al.  Localization of the mei-1 gene product of Caenorhaditis elegans, a meiotic-specific spindle component , 1994, The Journal of cell biology.

[105]  K. Kemphues,et al.  par-2, a gene required for blastomere asymmetry in Caenorhabditis elegans, encodes zinc-finger and ATP-binding motifs. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[106]  T. C. Evans,et al.  Translational control of maternal glp-1 mRNA establishes an asymmetry in the C. elegans embryo , 1994, Cell.

[107]  P. Mains,et al.  mei-1, a gene required for meiotic spindle formation in Caenorhabditis elegans, is a member of a family of ATPases. , 1994, Genetics.

[108]  Steven N. Hird,et al.  Cortical and cytoplasmic flow polarity in early embryonic cells of Caenorhabditis elegans , 1993, The Journal of cell biology.

[109]  P. Mains,et al.  Genetic studies of mei-1 gene activity during the transition from meiosis to mitosis in Caenorhabditis elegans. , 1993, Genetics.

[110]  Harold Weintraub,et al.  The pie-1 and mex-1 genes and maternal control of blastomere identity in early C. elegans embryos , 1992, Cell.

[111]  D. Morton,et al.  par-4, a gene required for cytoplasmic localization and determination of specific cell types in Caenorhabditis elegans embryogenesis. , 1992, Genetics.

[112]  K. Kemphues,et al.  Mutations in the par genes of Caenorhabditis elegans affect cytoplasmic reorganization during the first cell cycle. , 1990, Developmental biology.

[113]  D. Morton,et al.  Identification of genes required for cytoplasmic localization in early C. elegans embryos , 1988, Cell.

[114]  A. Hyman,et al.  Determination of cell division axes in the early embryogenesis of Caenorhabditis elegans , 1987, The Journal of cell biology.

[115]  H. Horvitz,et al.  A genetic pathway for the specification of the vulval cell lineages of Caenorhabditis elegans , 1987, Nature.

[116]  J. Priess,et al.  Cellular interactions in early C. elegans embryos , 1987, Cell.

[117]  S. Strome Fluorescence visualization of the distribution of microfilaments in gonads and early embryos of the nematode Caenorhabditis elegans , 1986, The Journal of cell biology.

[118]  S. Ward,et al.  Membrane and cytoplasmic proteins are transported in the same organelle complex during nematode spermatogenesis , 1986, The Journal of cell biology.

[119]  W. Wood,et al.  Generation of asymmetry and segregation of germ-line granules in early C. elegans embryos , 1983, Cell.

[120]  J. Sulston,et al.  The embryonic cell lineage of the nematode Caenorhabditis elegans. , 1983, Developmental biology.

[121]  S. Ward,et al.  Sperm morphogenesis in wild-type and fertilization-defective mutants of Caenorhabditis elegans , 1981, The Journal of cell biology.

[122]  M. Klass,et al.  Sperm isolation and biochemical analysis of the major sperm protein from Caenorhabditis elegans. , 1981, Developmental biology.

[123]  D. Wharton Nematode egg-shells , 1980, Parasitology.

[124]  S. Ward,et al.  Fertilization and sperm competition in the nematode Caenorhabditis elegans. , 1979, Developmental biology.

[125]  D. Morton,et al.  The Caenorhabditis elegans par-5 gene encodes a 14-3-3 protein required for cellular asymmetry in the early embryo. , 2002, Developmental biology.

[126]  J. McCarter,et al.  On the control of oocyte meiotic maturation and ovulation in Caenorhabditis elegans. , 1999, Developmental biology.

[127]  C. Mello,et al.  pos-1 encodes a cytoplasmic zinc-finger protein essential for germline specification in C. elegans. , 1999, Development.

[128]  Lesilee S. Rose,et al.  Early patterning of the C. elegans embryo. , 1998, Annual review of genetics.

[129]  S. Strome,et al.  A sperm-supplied factor required for embryogenesis in C. elegans. , 1996, Development.

[130]  S. Strome,et al.  Brief cytochalasin-induced disruption of microfilaments during a critical interval in 1-cell C. elegans embryos alters the partitioning of developmental instructions to the 2-cell embryo. , 1990, Development.

[131]  S. Strome,et al.  An analysis of the role of microfilaments in the establishment and maintenance of asymmetry in Caenorhabditis elegans zygotes. , 1988, Developmental biology.

[132]  D. Albertson Formation of the first cleavage spindle in nematode embryos. , 1984, Developmental biology.