Predicting phase steps in phase-shifting interferometry in the presence of noise and harmonics.

A novel method for estimating pixelwise phase step values in phase-shifting interferometry is presented. The method is based on the linear prediction property of the intensity fringes recorded temporally at a pixel on the charged-coupled device. The salient features of the method lie in their ability to handle linear miscalibration errors, to compensate for the presence of harmonics in an optical configuration and detector nonlinearity, and to allow for the use of arbitrary phase steps. The robustness of the proposed method is studied in the presence of noise and a comparison with several benchmarking algorithms is performed. The simulation results show the efficiency of the algorithm in retrieving the wrapped phase.

[1]  Y. Surrel Phase stepping: a new self-calibrating algorithm. , 1993, Applied optics.

[2]  D. J. Brangaccio,et al.  Digital wavefront measuring interferometer for testing optical surfaces and lenses. , 1974, Applied optics.

[3]  K Creath,et al.  Extended averaging technique for derivation of error-compensating algorithms in phase-shifting interferometry. , 1995, Applied optics.

[4]  P. Rastogi Phase shifting applied to four-wave holographic interferometers. , 1992, Applied optics.

[5]  Y Surrel,et al.  Design of algorithms for phase measurements by the use of phase stepping. , 1996, Applied optics.

[6]  Jean-Jacques Fuchs,et al.  Estimating the number of sinusoids in additive white noise , 1988, IEEE Trans. Acoust. Speech Signal Process..

[7]  T. Eiju,et al.  Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm. , 1987, Applied optics.

[8]  P. Carré Installation et utilisation du comparateur photoélectrique et interférentiel du Bureau International des Poids et Mesures , 1966 .

[9]  Horst Schreiber,et al.  Phase Shifting Interferometry , 2006 .

[10]  John E. Greivenkamp,et al.  Generalized Data Reduction For Heterodyne Interferometry , 1984 .

[11]  Kieran G. Larkin,et al.  Design and assessment of symmetrical phase-shifting algorithms , 1992 .

[12]  Ian F. C. Smith,et al.  A direct stochastic algorithm for global search , 2003, Appl. Math. Comput..

[13]  K. Hibino,et al.  Phase shifting for nonsinusoidal waveforms with phase-shift errors , 1995 .

[14]  J. Schwider,et al.  New compensating four-phase algorithm for phase-shift interferometry , 1993 .

[15]  Y Zhu,et al.  Method for designing error-compensating phase-calculation algorithms for phase-shifting interferometry. , 2001, Applied optics.

[16]  Katherine Creath,et al.  Phase-Shifting Holographic Interferometry , 1994 .

[17]  J. Schwider,et al.  Digital wave-front measuring interferometry: some systematic error sources. , 1983, Applied optics.

[18]  C. J. Morgan Least-squares estimation in phase-measurement interferometry. , 1982, Optics letters.

[19]  Frankie K. W. Chan,et al.  Accurate frequency estimation for real harmonic sinusoids , 2004, IEEE Signal Processing Letters.

[20]  Peter J. de Groot,et al.  Long-wavelength laser diode interferometer for surface flatness measurement , 1994 .

[21]  G. Stoilov,et al.  Phase-stepping interferometry: Five-frame algorithm with an arbitrary step , 1997 .

[22]  G. T. Reid Automatic fringe pattern analysis: A review , 1986 .

[23]  C. Rathjen,et al.  Statistical properties of phase-shift algorithms , 1995 .