A parallel solution-adaptive scheme for multi-phase core flows in solid propellant rocket motors

The development of a parallel adaptive mesh refinement (AMR) scheme is described for solving the governing equations for multi-phase (gas–particle) core flows in solid propellant rocket motors (SRMs). An Eulerian formulation is used to describe the coupled motion between the gas and particle phases. A cell-centred upwind finite-volume discretization and the use of limited linear reconstruction, Riemann solver based flux functions for the gas and particle phases, and explicit multi-stage time-stepping allows for high solution accuracy and computational robustness. A Riemann problem is formulated for prescribing boundary data at the burning surface and a mesh adjustment algorithm has been implemented to adjust the multi-block quadrilateral mesh to the combustion interface. A flexible block-based hierarchical data structure is used to facilitate automatic solution-directed mesh adaptation according to physics-based refinement criteria. Efficient and scalable parallel implementations are achieved with domain decomposition on distributed memory multi-processor architectures. Numerical results are described to demonstrate the capabilities of the approach for predicting SRM core flows.

[1]  Michael T. Heath,et al.  WHOLE SYSTEM SIMULATION OF SOLID PROPELLANT ROCKETS , 2002 .

[2]  J. J. Gottlieb,et al.  COLLECTION OF BOUNDARY CONDITIONS FOR ONE-AND SOME MULTI-DIMENSIONAL UNSTEADY FLOWS OF POLYTROPIC GASES , 1999 .

[4]  M. Berger,et al.  Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .

[5]  Bernd Einfeld On Godunov-type methods for gas dynamics , 1988 .

[6]  H. Krier,et al.  2D model for unsteady burning heterogeneous AP/binder solid propellants , 2000 .

[7]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme I. The quest of monotonicity , 1973 .

[8]  Gianluca Iaccarino,et al.  Numerical investigation of 3D two-phase turbulent flows in solid rocket motors , 1998 .

[9]  James J. Quirk,et al.  A Parallel Adaptive Mesh Refinement Algorithm , 1993 .

[10]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[11]  S. Balachandar,et al.  Full-Physics Large-Scale Multiphase Large Eddy Simulations of Flow Inside Solid Rocket Motors , 2002 .

[12]  Vigor Yang,et al.  Solid propellant chemistry, combustion, and motor interior ballistics , 2000 .

[13]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[14]  Timothy J. Barth,et al.  Recent developments in high order K-exact reconstruction on unstructured meshes , 1993 .

[15]  B. Vanleer,et al.  Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection , 1977 .

[16]  Philip L. Roe,et al.  Generalized formulation of TVD Lax-Wendroff schemes , 1984 .

[17]  Erland Orbekk Internal flow analysis of a technology demonstrator rocket motor with new CFD code , 1998 .

[18]  B. V. Leer,et al.  Towards the Ultimate Conservative Difference Scheme , 1997 .

[19]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme , 1974 .

[20]  J. Gottlieb,et al.  Numerical model for pellet-dispersion igniter systems , 1988 .

[21]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[22]  Bram van Leer,et al.  Design of Optimally Smoothing Multi-Stage Schemes for the Euler Equations , 1989 .

[23]  Ralf Hartmann,et al.  Adaptive Discontinuous Galerkin Finite Element Methods for Nonlinear Hyperbolic Conservation Laws , 2002, SIAM J. Sci. Comput..

[24]  W. Gropp,et al.  Using MPI-2nd Edition , 1999 .

[25]  Clinton P. T. Groth,et al.  PARALLEL SOLUTION-ADAPTIVE SCHEME FOR MULTI-PHASE CORE FLOWS IN ROCKET MOTORS , 2003 .

[26]  S. Osher,et al.  Uniformly high order accuracy essentially non-oscillatory schemes III , 1987 .

[27]  J. J. Quirk,et al.  An adaptive grid algorithm for computational shock hydrodynamics , 1991 .

[28]  D. D. Zeeuw,et al.  An adaptively refined Cartesian mesh solver for the Euler equations , 1993 .

[29]  S. Osher Riemann Solvers, the Entropy Condition, and Difference , 1984 .

[30]  S. Balachandar,et al.  Large-scale multiphase large-eddy simulation of flows in Solid-Rocket motors , 2003 .

[31]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme III. Upstream-centered finite-difference schemes for ideal compressible flow , 1977 .

[32]  T. Linde,et al.  A practical, general‐purpose, two‐state HLL Riemann solver for hyperbolic conservation laws , 2002 .

[33]  Francois Vuillot,et al.  2D NAVIER-STOKES STABILITY COMPUTATIONS FOR SOLID ROCKET MOTORS : ROTATIONAL, COMBUSTION AND TWO-PHASE FLOW EFFECTS. , 1997 .

[34]  Kazuyoshi Takayama,et al.  Conservative Smoothing on an Adaptive Quadrilateral Grid , 1999 .

[35]  C. Peskin Acta Numerica 2002: The immersed boundary method , 2002 .

[36]  R. LeVeque,et al.  An Adaptive Cartesian Mesh Algorithm for the Euler Equations in Arbitrary Geometries , 1989 .

[37]  J. Young,et al.  The calculation of inertial particle transport in dilute gas-particle flows , 2001 .

[38]  Bram van Leer,et al.  A simulation technique for 2-D unsteady inviscid flows around arbitrarily moving and deforming bodies of arbitrary geometry , 1993 .

[39]  P. Colella,et al.  Local adaptive mesh refinement for shock hydrodynamics , 1989 .

[40]  M. Berger,et al.  Robust and efficient Cartesian mesh generation for component-based geometry , 1998 .

[41]  Kenneth G. Powell,et al.  An accuracy assessment of cartesian-mesh approaches for the euler equations , 1993 .

[42]  B. Leer,et al.  Flux-vector splitting for the Euler equations , 1997 .

[43]  F. E. Marble Dynamics of Dusty Gases , 1970 .

[44]  D. D. Zeeuw,et al.  Global three‐dimensional MHD simulation of a space weather event: CME formation, interplanetary propagation, and interaction with the magnetosphere , 2000 .

[45]  Richard Saurel,et al.  Two-phase flows: Second-order schemes and boundary conditions , 1994 .

[46]  P. Frederickson,et al.  Higher order solution of the Euler equations on unstructured grids using quadratic reconstruction , 1990 .

[47]  Henri Paillere,et al.  A wave-model-based refinement criterion for adaptive-grid computation of compressible flows , 1992 .

[48]  P. Woodward,et al.  The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .

[49]  George Rudinger,et al.  Fundamentals of gas-particle flow , 1980 .

[50]  P. Roe,et al.  A Solution-Adaptive Upwind Scheme for Ideal Magnetohydrodynamics , 1999 .

[51]  Fady Najjar,et al.  Computations of Two-Phase Flow in Aiuminized Solid Propellant Rockets , 2000 .

[52]  V. Venkatakrishnan On the accuracy of limiters and convergence to steady state solutions , 1993 .

[53]  Richard D. Hornung,et al.  Parallel Adaptive Mesh Refinement , 2006, Parallel Processing for Scientific Computing.

[54]  David R. Greatrix,et al.  Combined Structural Oscillation Effects o:n Solid Rocket Internal Ballistics , 1999 .

[55]  Clinton P. T. Groth,et al.  Assessment of Riemann solvers for unsteady one-dimensional inviscid flows for perfect gases , 1988 .

[56]  Quentin F. Stout,et al.  A parallel solution-adaptive scheme for ideal magnetohydrodynamics , 1999 .

[57]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[58]  Philip L. Roe,et al.  Adaptive-mesh algorithms for computational fluid dynamics , 1993 .

[59]  Roger L. Davis,et al.  DECOMPOSITION AND PARALLELIZATION STRATEGIES FOR ADAPTIVE GRID-EMBEDDING TECHNIQUES , 1993 .

[60]  Josef Ballmann,et al.  Development Of A Flow Solver Employing Local Adaptation Based On Multiscale Analysis On B-Spline Gri , 2000 .

[61]  J. Sabnis Numerical Simulation of Distributed Combustion in Solid Rocket Motors with Metalized Propellant , 2003 .

[62]  Marsha J. Berger,et al.  AMR on the CM-2 , 1994 .

[63]  Eric Daniel,et al.  Eulerian approach for unsteady two-phase reactive solid rocket motor flows loaded with aluminum particles , 1998 .

[64]  G. C. Chang,et al.  Numerical study of gas-particle flow in a solid rocket nozzle , 1987 .

[65]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[66]  I. Bohachevsky,et al.  Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics , 1959 .

[67]  Merrill K. King Erosive Burning of Composite Solid Propellants: Experimental and Modeling Studies , 1979 .

[68]  G. Carrier,et al.  Simple modeling of particle trajectories in solid rocket motors , 1991 .