Light-operated mechanized nanoparticles.

Mesoporous silica (MCM-41) nanoparticles modified by azobenzene derivatives, capable of storing small molecules and releasing them following light irradiation, have been fabricated and characterized. In the presence of the beta-cyclodextrin and/or pyrene-modified beta-cyclodextrin rings, the beta-cyclodextrin and/or pyrene-modified beta-cyclodextrin rings will thread onto the azobenzene-containing stalks and bind to trans-azobenzene units to form the pseudorotaxanes, thus sealing the nanopores and stopping release of the cargo. Upon irradiation, the isomerization of trans-to-cis azobenzene units leads to the dissociation of the beta-cyclodextrin and/or pyrene-modified beta-cyclodextrin rings from the stalks, thus opening the gates to the nanopores and releasing the cargo.

[1]  M. Vallet‐Regí,et al.  A New Property of MCM-41: Drug Delivery System , 2001 .

[2]  J. Fraser Stoddart,et al.  Supramolecular nanovalves controlled by proton abstraction and competitive binding , 2006 .

[3]  Hiroto Murakami,et al.  A multi-mode-driven molecular shuttle: photochemically and thermally reactive azobenzene rotaxanes. , 2005, Journal of the American Chemical Society.

[4]  Plamen Atanassov,et al.  Photoregulation of Mass Transport through a Photoresponsive Azobenzene-Modified Nanoporous Membrane , 2004 .

[5]  Manuel Arruebo,et al.  Development of Magnetic Nanostructured Silica-Based Materials as Potential Vectors for Drug-Delivery Applications , 2006 .

[6]  P. Minoofar,et al.  Controlled placement of luminescent molecules and polymers in mesostructured sol--gel thin films. , 2001, Journal of the American Chemical Society.

[7]  Harry L Anderson,et al.  Unidirectional photoinduced shuttling in a rotaxane with a symmetric stilbene dumbbell. , 2002, Angewandte Chemie.

[8]  Jeffrey I. Zink,et al.  Versatile Supramolecular Nanovalves Reconfigured for Light Activation , 2007 .

[9]  Hsian-Rong Tseng,et al.  An operational supramolecular nanovalve. , 2004, Journal of the American Chemical Society.

[10]  Bruce Dunn,et al.  Continuous formation of supported cubic and hexagonal mesoporous films by sol–gel dip-coating , 1997, Nature.

[11]  C. Barbé,et al.  Silica Particles: A Novel Drug‐Delivery System , 2004 .

[12]  Jeffrey I. Zink,et al.  Photo-Driven Expulsion of Molecules from Mesostructured Silica Nanoparticles , 2007 .

[13]  Jeffrey I Zink,et al.  Light-activated nanoimpeller-controlled drug release in cancer cells. , 2008, Small.

[14]  Ben L Feringa,et al.  A Light-Actuated Nanovalve Derived from a Channel Protein , 2005, Science.

[15]  F. Xiao,et al.  pH-responsive carrier system based on carboxylic acid modified mesoporous silica and polyelectrolyte for drug delivery , 2005 .

[16]  Brian G. Trewyn,et al.  Mesoporous Silica Nanoparticles for Drug Delivery and Biosensing Applications , 2007 .

[17]  N. Nakashima,et al.  A Light-Driven Molecular Shuttle Based on a Rotaxane , 1997 .

[18]  Yan-Li Zhao,et al.  Assembly behavior of inclusion complexes of beta-cyclodextrin with 4-hydroxyazobenzene and 4-aminoazobenzene. , 2005, Organic & biomolecular chemistry.

[19]  Hsian-Rong Tseng,et al.  A reversible molecular valve. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[20]  S. Monti,et al.  cis .dblharw. trans Photoisomerization of azobenzene-cyclodextrin inclusion complexes , 1987 .

[21]  C. Brinker,et al.  Self-directed assembly of photoactive hybrid silicates derived from an azobenzene-bridged silsesquioxane. , 2002, Journal of the American Chemical Society.

[22]  J. F. Stoddart,et al.  Design and optimization of molecular nanovalves based on redox-switchable bistable rotaxanes. , 2007, Journal of the American Chemical Society.

[23]  María Vallet-Regí,et al.  Confinement and controlled release of bisphosphonates on ordered mesoporous silica-based materials. , 2006, Journal of the American Chemical Society.

[24]  K. Unger,et al.  The synthesis of micrometer‐ and submicrometer‐size spheres of ordered mesoporous oxide MCM‐41 , 1997 .

[25]  Seong Huh,et al.  Organic Functionalization and Morphology Control of Mesoporous Silicas via a Co-Condensation Synthesis Method , 2003 .

[26]  María Vallet-Regí,et al.  Mesoporous materials for drug delivery. , 2007, Angewandte Chemie.

[27]  J. S. Beck,et al.  Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism , 1992, Nature.

[28]  Sang Cheon Lee,et al.  Controlled release of guest molecules from mesoporous silica particles based on a pH-responsive polypseudorotaxane motif. , 2007, Angewandte Chemie.

[29]  Monty Liong,et al.  Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs. , 2007, Small.

[30]  Victor S-Y Lin,et al.  Mesoporous silica nanoparticles for intracellular delivery of membrane-impermeable proteins. , 2007, Journal of the American Chemical Society.

[31]  William R. Dichtel,et al.  Enzyme-responsive snap-top covered silica nanocontainers. , 2008, Journal of the American Chemical Society.

[32]  C. Tribet,et al.  Photoresponsive viscosity and host-guest association in aqueous mixtures of poly-cyclodextrin with azobenzene-modified poly(acrylic)acid. , 2007, The journal of physical chemistry. B.

[33]  A. Seiyama,et al.  Stability and structure of the inclusion complexes of alkyl-substituted hydroxyphenylazo derivatives of sulfanilic acid with .alpha.- and .beta.-cyclodextrins , 1990 .

[34]  Jeffrey I Zink,et al.  Multiply doped nanostructured silicate sol-gel thin films: spatial segregation of dopants, energy transfer, and distance measurements. , 2005, Journal of the American Chemical Society.

[35]  Y. Takashima,et al.  Thermal and photochemical switching of conformation of poly(ethylene glycol)-substituted cyclodextrin with an azobenzene group at the chain end. , 2007, Journal of the American Chemical Society.

[36]  R. Martínez‐Máñez,et al.  Photochemical and Chemical Two‐Channel Control of Functional Nanogated Hybrid Architectures , 2007 .

[37]  R. Rossi,et al.  Effect of β-Cyclodextrin on the Thermal Cis−Trans Isomerization of Azobenzenes , 1996 .

[38]  Masahiro Fujiwara,et al.  Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica , 2003, Nature.

[39]  P. Minoofar,et al.  Placement and characterization of pairs of luminescent molecules in spatially separated regions of nanostructured thin films. , 2002, Journal of the American Chemical Society.

[40]  Ying-Bing Jiang,et al.  Photoresponsive nanocomposite formed by self-assembly of an azobenzene-modified silane. , 2003, Angewandte Chemie.

[41]  Mary S. Gin,et al.  A light-gated synthetic ion channel. , 2008, Organic letters.

[42]  Pierre M. Petroff,et al.  Generalized synthesis of periodic surfactant/inorganic composite materials , 1994, Nature.

[43]  Galen D. Stucky,et al.  MESOPOROUS SILICATE SEQUESTRATION AND RELEASE OF PROTEINS , 1999 .

[44]  J. F. Stoddart,et al.  pH-responsive supramolecular nanovalves based on cucurbit[6]uril pseudorotaxanes. , 2008, Angewandte Chemie.

[45]  Hiroharu Yui,et al.  Femtosecond time-resolved spectroscopy of photoisomerization of methyl orange in cyclodextrins , 2001 .

[46]  C. Mou,et al.  Direct method for surface silyl functionalization of mesoporous silica. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[47]  Cari D. Pentecost,et al.  Construction of a pH-driven supramolecular nanovalve. , 2006, Organic letters.

[48]  Akira Harada,et al.  Contrast viscosity changes upon photoirradiation for mixtures of poly(acrylic acid)-based alpha-cyclodextrin and azobenzene polymers. , 2006, Journal of the American Chemical Society.