Exact Low-Rank Matrix Recovery via Nonconvex Schatten P-Minimization

The low-rank matrix recovery (LMR) arises in many fields such as signal and image processing, quantum state tomography, magnetic resonance imaging, system identification and control, and it is generally NP-hard. Recently, Majumdar and Ward [Majumdar, A and RK Ward (2011). An algorithm for sparse MRI reconstruction by Schatten p-norm minimization. Magnetic Resonance Imaging, 29, 408–417]. had successfully applied nonconvex Schatten p-minimization relaxation of LMR in magnetic resonance imaging. In this paper, our main aim is to establish RIP theoretical result for exact LMR via nonconvex Schatten p-minimization. Carefully speaking, letting $\mathcal{A}$ be a linear transformation from ℝm×n into ℝs and r be the rank of recovered matrix X ∈ ℝm×n, and if $\mathcal{A}$ satisfies the RIP condition $\sqrt{2}\delta_{\max\{r+\lceil\frac{3}{2}k\rceil, 2k\}}+{(\frac{k}{2r})}^{\frac{1}{p}-\frac{1}{2}}\delta_{2r+k}

[1]  Stephen P. Boyd,et al.  A rank minimization heuristic with application to minimum order system approximation , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[2]  Rayan Saab,et al.  Stable sparse approximations via nonconvex optimization , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[3]  D. L. Donoho,et al.  Compressed sensing , 2006, IEEE Trans. Inf. Theory.

[4]  Yinyu Ye,et al.  A note on the complexity of Lp minimization , 2011, Math. Program..

[5]  Rayan Saab,et al.  Sparse Recovery by Non-convex Optimization -- Instance Optimality , 2008, ArXiv.

[6]  Armando Manduca,et al.  Highly Undersampled Magnetic Resonance Image Reconstruction via Homotopic $\ell_{0}$ -Minimization , 2009, IEEE Transactions on Medical Imaging.

[7]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[8]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2009, Found. Comput. Math..

[9]  Lie Wang,et al.  New Bounds for Restricted Isometry Constants , 2009, IEEE Transactions on Information Theory.

[10]  Rémi Gribonval,et al.  Restricted Isometry Constants Where $\ell ^{p}$ Sparse Recovery Can Fail for $0≪ p \leq 1$ , 2009, IEEE Transactions on Information Theory.

[11]  Michael Elad,et al.  From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images , 2009, SIAM Rev..

[12]  Rick Chartrand,et al.  Fast algorithms for nonconvex compressive sensing: MRI reconstruction from very few data , 2009, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[13]  Xiaoming Huo,et al.  Uncertainty principles and ideal atomic decomposition , 2001, IEEE Trans. Inf. Theory.

[14]  Y. Ye,et al.  Lower Bound Theory of Nonzero Entries in Solutions of ℓ2-ℓp Minimization , 2010, SIAM J. Sci. Comput..

[15]  E. Candès The restricted isometry property and its implications for compressed sensing , 2008 .

[16]  Emmanuel J. Candès,et al.  Tight oracle bounds for low-rank matrix recovery from a minimal number of random measurements , 2010, ArXiv.

[17]  Song Li,et al.  Restricted p–isometry property and its application for nonconvex compressive sensing , 2012, Adv. Comput. Math..

[18]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[19]  Rick Chartrand,et al.  Exact Reconstruction of Sparse Signals via Nonconvex Minimization , 2007, IEEE Signal Processing Letters.

[20]  Jun Zhang,et al.  On Recovery of Sparse Signals Via $\ell _{1}$ Minimization , 2008, IEEE Transactions on Information Theory.

[21]  R. Chartrand,et al.  Restricted isometry properties and nonconvex compressive sensing , 2007 .

[22]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[23]  Stéphane Canu,et al.  Recovering Sparse Signals With a Certain Family of Nonconvex Penalties and DC Programming , 2009, IEEE Transactions on Signal Processing.

[24]  A. Majumdar,et al.  An algorithm for sparse MRI reconstruction by Schatten p-norm minimization. , 2011, Magnetic resonance imaging.

[25]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[26]  Emmanuel J. Candès,et al.  Tight Oracle Inequalities for Low-Rank Matrix Recovery From a Minimal Number of Noisy Random Measurements , 2011, IEEE Transactions on Information Theory.

[27]  Stephen Becker,et al.  Quantum state tomography via compressed sensing. , 2009, Physical review letters.

[28]  R. DeVore,et al.  Compressed sensing and best k-term approximation , 2008 .

[29]  Lie Wang,et al.  Shifting Inequality and Recovery of Sparse Signals , 2010, IEEE Transactions on Signal Processing.

[30]  Emmanuel J. Candès,et al.  Matrix Completion With Noise , 2009, Proceedings of the IEEE.

[31]  S. Foucart,et al.  Sparsest solutions of underdetermined linear systems via ℓq-minimization for 0 , 2009 .

[32]  Ao Tang,et al.  On the Performance of Sparse Recovery Via lp-Minimization (0 <= p <= 1) , 2010, IEEE Trans. Inf. Theory.

[33]  Ronen Basri,et al.  Lambertian Reflectance and Linear Subspaces , 2003, IEEE Trans. Pattern Anal. Mach. Intell..