Multiscale Reaction-Diffusion Algorithms: PDE-Assisted Brownian Dynamics

Two algorithms that combine Brownian dynamics (BD) simulations with mean-field partial differential equations (PDEs) are presented. This PDE-assisted Brownian dynamics (PBD) methodology provides exact particle tracking data in parts of the domain, whilst making use of a mean-field reaction-diffusion PDE description elsewhere. The first PBD algorithm couples BD simulations with PDEs by randomly creating new particles close to the interface, which partitions the domain, and by reincorporating particles into the continuum PDE-description when they cross the interface. The second PBD algorithm introduces an overlap region, where both descriptions exist in parallel. It is shown that the overlap region is required to accurately compute variances using PBD simulations. Advantages of both PBD approaches are discussed and illustrative numerical examples are presented.

[1]  D. Bray,et al.  Simulated Diffusion of Phosphorylated CheY through the Cytoplasm of Escherichia coli , 2005, Journal of bacteriology.

[2]  E. Flekkøy,et al.  Hybrid computations with flux exchange , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[3]  Radek Erban,et al.  DYNAMICS OF POLYDISPERSE IRREVERSIBLE ADSORPTION: A PHARMACOLOGICAL EXAMPLE , 2006 .

[4]  Johan Hattne,et al.  Stochastic reaction-diffusion simulation with MesoRD , 2005, Bioinform..

[5]  M. Howard,et al.  How to build a robust intracellular concentration gradient. , 2012, Trends in cell biology.

[6]  R. Erban,et al.  Stochastic modelling of reaction–diffusion processes: algorithms for bimolecular reactions , 2009, Physical biology.

[7]  Andreas Hellander,et al.  Simulation of Stochastic Reaction-Diffusion Processes on Unstructured Meshes , 2008, SIAM J. Sci. Comput..

[8]  Daniel M. Tartakovsky,et al.  Hybrid Simulations of Reaction-Diffusion Systems in Porous Media , 2008, SIAM J. Sci. Comput..

[9]  S. Chung,et al.  Tests of continuum theories as models of ion channels. I. Poisson-Boltzmann theory versus Brownian dynamics. , 2000, Biophysical journal.

[10]  D. Bray,et al.  Stochastic simulation of chemical reactions with spatial resolution and single molecule detail , 2004, Physical biology.

[11]  S. Jonathan Chapman,et al.  Analysis of Brownian Dynamics Simulations of Reversible Bimolecular Reactions , 2010, SIAM J. Appl. Math..

[12]  P. Maini,et al.  Dispersal, Individual Movement and Spatial Ecology A Mathematical Perspective , 2013 .

[13]  Esteban Moro Hybrid method for simulating front propagation in reaction-diffusion systems. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  On Chemisorption of Polymers to Solid Surfaces , 2006, physics/0609029.

[15]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[16]  Pieter Rein ten Wolde,et al.  Fundamental Limits to Position Determination by Concentration Gradients , 2007, PLoS Comput. Biol..

[17]  Shin-Ho Chung,et al.  Tests of continuum theories as models of ion channels. II. Poisson-Nernst-Planck theory versus brownian dynamics. , 2000, Biophysical journal.

[18]  Radek Erban,et al.  Time scale of random sequential adsorption. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  Andreas Hellander,et al.  An adaptive algorithm for simulation of stochastic reaction-diffusion processes , 2010, J. Comput. Phys..

[20]  P. R. ten Wolde,et al.  Spatio-temporal correlations can drastically change the response of a MAPK pathway , 2009, Proceedings of the National Academy of Sciences.

[21]  Sten Rüdiger,et al.  Diffusive spatio-temporal noise in a first-passage time model for intracellular calcium release. , 2013, The Journal of chemical physics.

[22]  Daniel M. Tartakovsky,et al.  Algorithm refinement for stochastic partial differential equations: I. linear diffusion , 2002 .

[23]  S. Jonathan Chapman,et al.  From Brownian Dynamics to Markov Chain: An Ion Channel Example , 2012, SIAM J. Appl. Math..

[24]  Lewis Wolpert,et al.  Principles of Development , 1997 .

[25]  Pavel I Zhuravlev,et al.  Molecular noise of capping protein binding induces macroscopic instability in filopodial dynamics , 2009, Proceedings of the National Academy of Sciences.

[26]  P. T. Wolde,et al.  Simulating biochemical networks at the particle level and in time and space: Green's function reaction dynamics. , 2005 .

[27]  J. Neumann Mathematical Foundations of Quantum Mechanics , 1955 .

[28]  P. R. ten Wolde,et al.  Simulating biochemical networks at the particle level and in time and space: Green's function reaction dynamics. , 2005, Physical review letters.

[29]  J Feder,et al.  Coupling particles and fields in a diffusive hybrid model. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Radek Erban,et al.  Hybrid Modelling of Individual Movement and Collective Behaviour , 2013 .

[31]  R. Erban,et al.  Reactive boundary conditions for stochastic simulations of reaction–diffusion processes , 2007, Physical biology.

[32]  Daniel M. Tartakovsky,et al.  Algorithm refinement for stochastic partial differential equations. , 2003 .

[33]  Maria Bruna,et al.  Excluded-volume effects in the diffusion of hard spheres. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  Radek Erban,et al.  The two-regime method for optimizing stochastic reaction–diffusion simulations , 2012, Journal of The Royal Society Interface.

[35]  K. Ulbrich,et al.  Polymer-coated adenovirus permits efficient retargeting and evades neutralising antibodies , 2001, Gene Therapy.

[36]  P. Maini,et al.  A practical guide to stochastic simulations of reaction-diffusion processes , 2007, 0704.1908.