Multicategory vertex discriminant analysis for high-dimensional data

In response to the challenges of data mining, discriminant analysis continues to evolve as a vital branch of statistics. Our recently introduced method of vertex discriminant analysis (VDA) is ideally suited to handle multiple categories and an excess of predictors over training cases. The current paper explores an elaboration of VDA that conducts classification and variable selection simultaneously. Adding lasso (l-norm) and Euclidean penalties to the VDA loss function eliminates unnecessary predictors. Lasso penalties apply to each predictor coefficient separately; Euclidean penalties group the collective coefficients of a single predictor. With these penalties in place, cyclic coordinate descent accelerates estimation of all coefficients. Our tests on simulated and benchmark real data demonstrate the virtues of penalized VDA in model building and prediction in high-dimensional settings.

[1]  L. Breiman Better subset regression using the nonnegative garrote , 1995 .

[2]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[3]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[4]  Kristin P. Bennett,et al.  Multicategory Classification by Support Vector Machines , 1999, Comput. Optim. Appl..

[5]  Jason Weston,et al.  Support vector machines for multi-class pattern recognition , 1999, ESANN.

[6]  J. Mesirov,et al.  Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. , 1999, Science.

[7]  U. Alon,et al.  Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Ulrich H.-G. Kreßel,et al.  Pairwise classification and support vector machines , 1999 .

[9]  Christian A. Rees,et al.  Molecular portraits of human breast tumours , 2000, Nature.

[10]  Ash A. Alizadeh,et al.  Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling , 2000, Nature.

[11]  M. Ringnér,et al.  Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks , 2001, Nature Medicine.

[12]  Koby Crammer,et al.  On the Algorithmic Implementation of Multiclass Kernel-based Vector Machines , 2002, J. Mach. Learn. Res..

[13]  Yann Guermeur,et al.  Combining Discriminant Models with New Multi-Class SVMs , 2002, Pattern Analysis & Applications.

[14]  S. Dudoit,et al.  Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data , 2002 .

[15]  E. Lander,et al.  Gene expression correlates of clinical prostate cancer behavior. , 2002, Cancer cell.

[16]  R. Tibshirani,et al.  Diagnosis of multiple cancer types by shrunken centroids of gene expression , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Tong Zhang Statistical behavior and consistency of classification methods based on convex risk minimization , 2003 .

[18]  Peter Bühlmann,et al.  Boosting for Tumor Classification with Gene Expression Data , 2003, Bioinform..

[19]  Yi Lin Multicategory Support Vector Machines, Theory, and Application to the Classification of . . . , 2003 .

[20]  Tao Li,et al.  A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression , 2004, Bioinform..

[21]  Tong Zhang,et al.  Statistical Analysis of Some Multi-Category Large Margin Classification Methods , 2004, J. Mach. Learn. Res..

[22]  Marcel Dettling,et al.  BagBoosting for tumor classification with gene expression data , 2004, Bioinform..

[23]  H. Zou The Margin Vector , Admissible Loss and Multi-class Margin-based Classifiers , 2005 .

[24]  Yufeng Liu,et al.  Multicategory ψ-Learning and Support Vector Machine: Computational Tools , 2005 .

[25]  Constantin F. Aliferis,et al.  A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis , 2004, Bioinform..

[26]  Tao Jiang,et al.  Robust and accurate cancer classification with gene expression profiling , 2005, 2005 IEEE Computational Systems Bioinformatics Conference (CSB'05).

[27]  Yufeng Liu,et al.  Multicategory ψ-Learning , 2006 .

[28]  Yufeng Liu,et al.  Fisher Consistency of Multicategory Support Vector Machines , 2007, AISTATS.

[29]  R. Tibshirani,et al.  PATHWISE COORDINATE OPTIMIZATION , 2007, 0708.1485.

[30]  Xiaotong Shen,et al.  On L1-Norm Multiclass Support Vector Machines , 2007 .

[31]  Hui Zou,et al.  Structured variable selection in support vector machines , 2007, 0710.0508.

[32]  K. Lange,et al.  An MM Algorithm for Multicategory Vertex Discriminant Analysis , 2008 .

[33]  Hao Helen Zhang,et al.  Variable selection for the multicategory SVM via adaptive sup-norm regularization , 2008, 0803.3676.

[34]  K. Lange,et al.  Coordinate descent algorithms for lasso penalized regression , 2008, 0803.3876.

[35]  H. Zou,et al.  NEW MULTICATEGORY BOOSTING ALGORITHMS BASED ON MULTICATEGORY FISHER-CONSISTENT LOSSES. , 2008, The annals of applied statistics.

[36]  H. Zou,et al.  Structured variable selection and estimation , 2009, 1011.0610.