Stem cells and repair of the heart

Stem-cell therapy provides the prospect of an exciting and powerful treatment to repair the heart. Although research has been undertaken in animals to analyse the safety and efficacy of this new approach, results have been inconclusive. The mechanism by which stem cells could improve cardiac function remains unclear. We describe the background to the concept of natural repair and the work that has been done to establish the role of stem cells in cardiac repair. Controversies have arisen in interpretation of experimental data. The important issues surrounding the application of stem-cell therapy to man are discussed critically. We discuss the future of this pioneering work in the setting of growing concerns about clinical studies in man without understanding the biological mechanisms involved, with the difficulties in funding this type of research.

[1]  G. Mcmahon,et al.  Fibroblast growth factor receptors regulate the ability for hindlimb regeneration in Xenopus laevis , 1998, Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society.

[2]  H. Blau,et al.  VEGF gene delivery to myocardium: deleterious effects of unregulated expression. , 2000, Circulation.

[3]  M. Grompe,et al.  Cell fusion is the principal source of bone-marrow-derived hepatocytes , 2003, Nature.

[4]  L. Zachariae,et al.  Fingertip lesions. An evaluation of conservative treatment versus free skin grafting. , 1974, Acta orthopaedica Scandinavica.

[5]  Paul D. Kessler,et al.  Human Mesenchymal Stem Cells Differentiate to a Cardiomyocyte Phenotype in the Adult Murine Heart , 2002, Circulation.

[6]  S. Ylä-Herttuala,et al.  Cardiovascular gene therapy , 2000, The Lancet.

[7]  R. Weisel,et al.  Survival and function of bioengineered cardiac grafts. , 1999, Circulation.

[8]  R. Prehn Immunosurveillance, regeneration and oncogenesis. , 1971, Progress in experimental tumor research.

[9]  F. Magrini,et al.  Homing of peripherally injected bone marrow cells in rat after experimental myocardial injury. , 2003, Haematologica.

[10]  R. Weisel,et al.  Fetal cell transplantation: a comparison of three cell types. , 1999, The Journal of thoracic and cardiovascular surgery.

[11]  C. di Loreto,et al.  Myocyte proliferation in end-stage cardiac failure in humans. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Qi-Long Ying,et al.  Changing potency by spontaneous fusion , 2002, Nature.

[13]  C. Eisenberg,et al.  Adult stem cells and their cardiac potential. , 2004, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology.

[14]  D. Torella,et al.  Adult Cardiac Stem Cells Are Multipotent and Support Myocardial Regeneration , 2003, Cell.

[15]  P. Merlet,et al.  Influence of mobilized stem cells on myocardial infarct repair in a nonhuman primate model. , 2003, Blood.

[16]  L. Silver,et al.  The ethical validity of using nuclear transfer in human transplantation. , 2000, JAMA.

[17]  H. Matsuda,et al.  Myocardial regeneration therapy for heart failure: hepatocyte growth factor enhances the effect of cellular cardiomyoplasty. , 2002, Circulation.

[18]  Stem cells: Fusion brings down barriers , 2003, Nature.

[19]  P. Tsonis Regeneration of the lens in amphibians. , 2000, Results and problems in cell differentiation.

[20]  H. Leonhardt,et al.  Reversal of terminal differentiation and control of DNA replication: Cyclin A and cdk2 specifically localize at subnuclear sites of DNA replication , 1993, Cell.

[21]  G. Koh,et al.  Targeted expression of transforming growth factor-beta 1 in intracardiac grafts promotes vascular endothelial cell DNA synthesis. , 1995, The Journal of clinical investigation.

[22]  G. Vassilopoulos,et al.  Transplanted bone marrow regenerates liver by cell fusion , 2003, Nature.

[23]  M. Rudnicki,et al.  The post‐natal heart contains a myocardial stem cell population , 2002, FEBS letters.

[24]  P. Tsonis,et al.  Spontaneous neoplasms in amphibia. , 1988, Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine.

[25]  M. West,et al.  Prospects for the use of nuclear transfer in human transplantation , 1999, Nature Biotechnology.

[26]  S. Homma,et al.  Neovascularization of ischemic myocardium by human bone-marrow–derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function , 2001, Nature Medicine.

[27]  D. Fiszer,et al.  Autologous bone marrow stem cell transplantation in acute myocardial infarction-report of two cases. , 2003, Kardiologia polska.

[28]  Patrick W Serruys,et al.  Catheter-based intramyocardial injection of autologous skeletal myoblasts as a primary treatment of ischemic heart failure: clinical experience with six-month follow-up. , 2003, Journal of the American College of Cardiology.

[29]  Mitsuo Umezu,et al.  Fabrication of Pulsatile Cardiac Tissue Grafts Using a Novel 3-Dimensional Cell Sheet Manipulation Technique and Temperature-Responsive Cell Culture Surfaces , 2002, Circulation research.

[30]  R. Weisel,et al.  Enhanced Myocardial Angiogenesis by Gene Transfer With Transplanted Cells , 2001, Circulation.

[31]  H. Kang,et al.  Effects of intracoronary infusion of peripheral blood stem-cells mobilised with granulocyte-colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: the MAGIC cell randomized clinical trial , 2004 .

[32]  K. Chien Stem cells: Lost in translation , 2004, Nature.

[33]  Tao-Sheng Li,et al.  The Safety and Feasibility of the Local Implantation of Autologous Bone Marrow Cells for Ischemic Heart Disease , 2003, Journal of cardiac surgery.

[34]  H. Schäfers,et al.  Cardiomyocytes of Noncardiac Origin in Myocardial Biopsies of Human Transplanted Hearts , 2002, Circulation.

[35]  E. Olson,et al.  Converging Pathways and Principles in Heart Development and Disease CV@CSH , 2002, Cell.

[36]  Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI) , 2002 .

[37]  Fred H. Gage,et al.  Can stem cells cross lineage boundaries? , 2001, Nature Medicine.

[38]  R. Weisel,et al.  Beneficial effect of autologous cell transplantation on infarcted heart function: comparison between bone marrow stromal cells and heart cells. , 2003, The Annals of thoracic surgery.

[39]  S. Bryant,et al.  Nerve dependency of regeneration: the role of Distal-less and FGF signaling in amphibian limb regeneration. , 1996, Development.

[40]  W. MacLellan,et al.  Genetic dissection of cardiac growth control pathways. , 2000, Annual review of physiology.

[41]  P. Anversa,et al.  Regeneration of the Infarcted Heart With Stem Cells Derived by Nuclear Transplantation , 2004, Circulation research.

[42]  D. Orlic Stem cell repair in ischemic heart disease: An experimental model , 2002, International journal of hematology.

[43]  M. Valdés,et al.  [Intracoronary stem cell transplantation in acute myocardial infarction]. , 2004, Revista espanola de cardiologia.

[44]  M. Greeley,et al.  Intra-coronary arterial injection of mesenchymal stromal cells and microinfarction in dogs , 2004, The Lancet.

[45]  A. Terzic,et al.  Stem cell differentiation requires a paracrine pathway in the heart , 2002, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[46]  E. Scott,et al.  Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion , 2002, Nature.

[47]  S. Hughes Cardiac stem cells , 2002, The Journal of pathology.

[48]  D. Smith,et al.  Cardiomyocyte transplantation in a porcine myocardial infarction model. , 1998, Cell transplantation.

[49]  B. S. Douglas CONSERVATIVE MANAGEMENT OF GUILLOTINE AMPUTATION OF THE FINGER IN CHILDREN , 1972, Australian paediatric journal.

[50]  Takayuki Saito,et al.  Transcoronary implantation of bone marrow stromal cells ameliorates cardiac function after myocardial infarction. , 2003, The Journal of thoracic and cardiovascular surgery.

[51]  R. Weisel,et al.  Autologous transplantation of bone marrow cells improves damaged heart function. , 1999, Circulation.

[52]  David A. Williams,et al.  Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts , 2004, Nature.

[53]  M. Yano,et al.  Therapeutic angiogenesis induced by local autologous bone marrow cell implantation. , 2002, The Annals of thoracic surgery.

[54]  J. Isner,et al.  Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. , 1999, Circulation research.

[55]  Bernd Hertenstein,et al.  Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial , 2004, The Lancet.

[56]  J. Slack,et al.  Effects of age on the hyperdynamic cardiac function of phospholamban knockout mice , 1997 .

[57]  Susan V. Bryant,et al.  Forelimb regeneration from different levels of amputation in the newt,Notophthalmus viridescens: Length, rate, and stages , 1973, Wilhelm Roux' Archiv für Entwicklungsmechanik der Organismen.

[58]  Arjun Deb,et al.  Bone Marrow–Derived Cardiomyocytes Are Present in Adult Human Heart: A Study of Gender-Mismatched Bone Marrow Transplantation Patients , 2003, Circulation.

[59]  I. Weissman,et al.  Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium , 2004, Nature.

[60]  Doris A Taylor,et al.  Regenerating functional myocardium: Improved performance after skeletal myoblast transplantation , 1998, Nature Medicine.

[61]  R. Prehn Immunosurveillance, Regeneration and Oncogenesis1 , 1971 .

[62]  A. Kosaki,et al.  Implantation of Bone Marrow Mononuclear Cells Into Ischemic Myocardium Enhances Collateral Perfusion and Regional Function via Side Supply of Angioblasts, Angiogenic Ligands, and Cytokines , 2001, Circulation.

[63]  D. Shum-Tim,et al.  Marrow stromal cells for cellular cardiomyoplasty: feasibility and potential clinical advantages. , 2000, The Journal of thoracic and cardiovascular surgery.

[64]  T. Fischer,et al.  Comparative response of plasma VWF in dogs to up-regulation of VWF mRNA by interleukin-11 versus Weibel-Palade body release by desmopressin (DDAVP). , 2003, Blood.

[65]  K. Watanabe,et al.  Elicitation of lens formation from the "ventral iris" epithelium of the newt by a carcinogen, N-methyl-N'-nitro-N-nitrosoguanidine. , 1973, Journal of embryology and experimental morphology.

[66]  A. Hagège,et al.  Comparison of the effects of fetal cardiomyocyte and skeletal myoblast transplantation on postinfarction left ventricular function. , 2000, The Journal of thoracic and cardiovascular surgery.

[67]  Y. Kaneda,et al.  Cell Transplantation for the Treatment of Acute Myocardial Infarction Using Vascular Endothelial Growth Factor–Expressing Skeletal Myoblasts , 2001, Circulation.

[68]  Erwin Hauser,et al.  Recruitment of bone-marrow-derived cells by skeletal and cardiac muscle in adult dystrophic mdx mice , 1999, Anatomy and Embryology.

[69]  G. Spangrude,et al.  Chimerism of the transplanted heart. , 2002, The New England journal of medicine.

[70]  F. Prósper,et al.  Autologous intramyocardial injection of cultured skeletal muscle-derived stem cells in patients with non-acute myocardial infarction. , 2003, European heart journal.

[71]  David M. Bodine,et al.  Bone marrow cells regenerate infarcted myocardium , 2001, Nature.

[72]  Bernd Westphal,et al.  Autologous bone-marrow stem-cell transplantation for myocardial regeneration , 2003, The Lancet.

[73]  J. Hayakawa,et al.  Cardiomyocyte Regeneration from Circulating Bone Marrow Cells in Mice , 2003, Pediatric Research.

[74]  Michael D. Schneider,et al.  Cardiac progenitor cells from adult myocardium: Homing, differentiation, and fusion after infarction , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[75]  A. Hagège,et al.  Myoblast transplantation for heart failure , 2001, The Lancet.

[76]  J. Pérez-Pomares,et al.  The epicardium and epicardially derived cells (EPDCs) as cardiac stem cells. , 2004, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology.

[77]  W. Baumgartner,et al.  Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects. , 2002, The Annals of thoracic surgery.

[78]  W. Wells Is transdifferentiation in trouble? , 2002, The Journal of cell biology.

[79]  M. Saha,et al.  Vertebrate eye development. , 1992, Current opinion in genetics & development.

[80]  James T. Willerson,et al.  Transendocardial, Autologous Bone Marrow Cell Transplantation for Severe, Chronic Ischemic Heart Failure , 2003, Circulation.

[81]  R. Weisel,et al.  Improved heart function with myogenesis and angiogenesis after autologous porcine bone marrow stromal cell transplantation. , 2002, The Journal of thoracic and cardiovascular surgery.

[82]  M. Entman,et al.  Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. , 2001, The Journal of clinical investigation.

[83]  S. Satomi-Kobayashi,et al.  Cardiac myocytes are recruited by bone marrow-derived cells in intact murine heart. , 2002, The Kobe journal of medical sciences.

[84]  J. Epstein,et al.  Smooth Muscle Cells, But Not Myocytes, of Host Origin in Transplanted Human Hearts , 2002, Circulation.

[85]  Klaus Pfeffer,et al.  Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes , 2003, Nature.

[86]  D. Fiszer,et al.  Percutaneous autologous myoblast transplantation in the treatment of post-infarction myocardial contractility impairment--report on two cases. , 2003, Kardiologia polska.

[87]  D. Smith,et al.  Myoblast transplantation in the porcine model: a potential technique for myocardial repair. , 1995, The Journal of thoracic and cardiovascular surgery.

[88]  M. West,et al.  Human therapeutic cloning , 1999, Nature Medicine.

[89]  Peter Wernet,et al.  Repair of Infarcted Myocardium by Autologous Intracoronary Mononuclear Bone Marrow Cell Transplantation in Humans , 2002 .

[90]  F. Gage,et al.  Stem cells: Cell fusion causes confusion , 2002, Nature.

[91]  M. Soonpaa,et al.  Survey of studies examining mammalian cardiomyocyte DNA synthesis. , 1998, Circulation research.

[92]  Federica Limana,et al.  Mobilized bone marrow cells repair the infarcted heart, improving function and survival , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[93]  S M Schwartz,et al.  Skeletal myoblast transplantation for repair of myocardial necrosis. , 1996, The Journal of clinical investigation.

[94]  Jo Ann Cameron,et al.  Regeneration of the urodele limb: A review , 2003, Developmental dynamics : an official publication of the American Association of Anatomists.

[95]  R. Hawley,et al.  Somatic Stem Cell Plasticity: To Be or Not To Be… , 2002, Stem cells.

[96]  E. Pektok,et al.  Autologous peripheral stem cell transplantation in patients with congestive heart failure due to ischemic heart disease. , 2004, European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery.

[97]  J. Leor,et al.  Bioengineered Cardiac Grafts: A New Approach to Repair the Infarcted Myocardium? , 2000, Circulation.

[98]  J. Bonventre,et al.  Transplanting cloned cells into therapeutic promise , 2002, Nature Biotechnology.

[99]  M. Egar,et al.  Reorganization of the ependyma during axolotl spinal cord regeneration: Changes in intermediate filament and fibronectin expression , 1992, Developmental dynamics : an official publication of the American Association of Anatomists.

[100]  G. Hallmans,et al.  Treatment of fingertip amputations with bone exposure. A comparative study between surgical and conservative treatment methods. , 1983, Scandinavian journal of plastic and reconstructive surgery.

[101]  A. Hagège,et al.  Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. , 2003, Journal of the American College of Cardiology.

[102]  B. Goldman,et al.  Evidence that human cardiac myocytes divide after myocardial infarction. , 2001, The New England journal of medicine.

[103]  P. King TRAPPED FINGER INJURY , 1979, The Medical journal of Australia.

[104]  S. Neubauer,et al.  Downregulation of the Na+-creatine cotransporter in experimental and in human heart failure , 1999 .

[105]  R. C. Chiu,et al.  Cellular cardiomyoplasty: myocardial regeneration with satellite cell implantation. , 1995, The Annals of thoracic surgery.

[106]  J. Saffitz,et al.  Evidence for Cardiomyocyte Repopulation by Extracardiac Progenitors in Transplanted Human Hearts , 2002, Circulation research.

[107]  M. Valdés,et al.  Regeneración miocárdica mediante la implantación intracoronaria de células madre en el infarto agudo de miocardio , 2004 .

[108]  W. Baumgartner,et al.  Fluorescence in situ hybridization for the Y-chromosome can be used to detect cells of recipient origin in allografted hearts following cardiac transplantation. , 1993, The American journal of pathology.

[109]  榊原 裕 Prevascularization with gelatin microspheres containing basic fibroblast growth factor enhances the benefits of cardiomyocyte transplantation , 2003 .

[110]  Stuart H. Orkin,et al.  Hematopoiesis and stem cells: plasticity versus developmental heterogeneity , 2002, Nature Immunology.

[111]  M. Matsuzaki,et al.  Enhancement of angiogenesis by the implantation of self bone marrow cells in a rat ischemic heart model. , 2000, The Journal of surgical research.

[112]  R. Weisel,et al.  Natural history of fetal rat cardiomyocytes transplanted into adult rat myocardial scar tissue. , 1997, Circulation.

[113]  M. Galiñanes,et al.  Autotransplantation of Unmanipulated Bone Marrow into Scarred Myocardium is Safe and Enhances Cardiac Function in Humans , 2004, Cell transplantation.

[114]  M. Rubart,et al.  Myocyte and myogenic stem cell transplantation in the heart. , 2003, Cardiovascular research.

[115]  C. Verfaillie Adult stem cells: assessing the case for pluripotency. , 2002, Trends in cell biology.

[116]  D. Bodine,et al.  Transplanted Adult Bone Marrow Cells Repair Myocardial Infarcts in Mice , 2001, Annals of the New York Academy of Sciences.

[117]  J. Isner Myocardial gene therapy , 2002, Nature.

[118]  Ursula Ravens,et al.  Cardiac tissue engineering. , 2002, Transplant immunology.

[119]  Yong-Fu Xiao,et al.  VEGF enhances functional improvement of postinfarcted hearts by transplantation of ESC-differentiated cells. , 2002, Journal of applied physiology.

[120]  I. Weissman,et al.  Little Evidence for Developmental Plasticity of Adult Hematopoietic Stem Cells , 2002, Science.

[121]  M. Yano,et al.  Improvement of cardiac function by bone marrow cell implantation in a rat hypoperfusion heart model. , 2003, The Annals of thoracic surgery.

[122]  HiroshiKamihata,et al.  Improvement of Collateral Perfusion and Regional Function by Implantation of Peripheral Blood Mononuclear Cells Into Ischemic Hibernating Myocardium , 2002 .

[123]  N. Weissman,et al.  Transendocardial delivery of autologous bone marrow enhances collateral perfusion and regional function in pigs with chronic experimental myocardial ischemia. , 2001, Journal of the American College of Cardiology.

[124]  B. Walker,et al.  Radioautographic studies of regeneration in the common newt III. Regeneration and repair of the intestine , 1962 .

[125]  P. Tsonis Effects of carcinogens on regenerating and non-regenerating limbs in amphibia (review). , 1983, Anticancer research.