An efficient local operator based Q-RTM algorithm with multi-stage optimization

Most existing Q-compensated reverse time migration (Q-RTM) algorithms are based on pseudo-spectral methods. Because of the global nature of pseudo-spectral operators, these methods are not ideal for efficient parallelization, implying that they may suffer from high computational cost and inefficient memory usage for large scale industrial problems. In this work, we report a novel Q-RTM algorithm - the multi-stage optimized Q-RTM method. This Q-RTM algorithm employs a finite-difference method to compensate both the amplitude and the phase simultaneously by uniquely combining two techniques: 1) negative t method for the amplitude compensation; 2) a multi-stage dispersion optimization technique for the phase correction. To prevent high frequency noise from growing exponentially and ruining the imaging results, we apply a finite impulse response (FIR) low-pass filter using the Kaiser Window. Both the theoretical analyses and numerical experiments demonstrate that this Q-RTM algorithm precisely recovers the de...

[1]  Li Yuan,et al.  A new parallel strategy for two-dimensional incompressible flow simulations using pseudo-spectral methods , 2004, physics/0411144.

[2]  Tieyuan Zhu,et al.  Modeling acoustic wave propagation in heterogeneous attenuating media using decoupled fractional Laplacians , 2014 .

[3]  P. M. Berg,et al.  A finite-difference contrast source inversion method , 2008 .

[4]  Biondo Biondi,et al.  Q-compensated reverse-time migration , 2014 .

[5]  Sergey Fomel,et al.  Viscoacoustic modeling and imaging using low-rank approximation , 2014 .

[6]  Einar Kjartansson,et al.  Constant Q-wave propagation and attenuation , 1979 .

[7]  R. Pelz The parallel Fourier pseudospectral method , 1991 .

[8]  G. Schuster,et al.  Wave-equation Q tomography , 2016 .

[9]  A. Abubakar,et al.  Three‐dimensional seismic full‐waveform inversion using the finite‐difference contrast source inversion method , 2011 .

[10]  G. McMechan,et al.  Viscoelastic true-amplitude prestack reverse-time depth migration , 2008 .

[11]  Cummer,et al.  The nearly perfectly matched layer is a perfectly matched layer , 2004, IEEE Antennas and Wireless Propagation Letters.

[12]  M. Lebedev,et al.  Seismic wave attenuation and dispersion resulting from wave-induced flow in porous rocks — A review , 2010 .

[13]  R. Clark,et al.  Anisotropic P‐wave attenuation measured from a multi‐azimuth surface seismic reflection survey , 2009 .

[14]  Aria Abubakar,et al.  Application of the finite-difference contrast-source inversion algorithm to seismic full-waveform data , 2009 .

[15]  Joakim O. Blanch,et al.  Viscoelastic finite-difference modeling , 1994 .

[16]  J. Claerbout Toward a unified theory of reflector mapping , 1971 .

[17]  Ronnie Kosloff,et al.  Wave propagation simulation in a linear viscoacoustic medium , 1988 .

[18]  N. Hargreaves,et al.  Inverse Q filtering by Fourier transform , 1991 .

[19]  Jingwei Hu,et al.  Q-compensated least-squares reverse time migration using low-rank one-step wave extrapolation , 2016 .

[20]  Gerard T. Schuster,et al.  Attenuation compensation for least-squares reverse time migration using the viscoacoustic-wave equation , 2014 .

[21]  Joakim O. Blanch,et al.  Modeling of a constant Q; methodology and algorithm for an efficient and optimally inexpensive viscoelastic technique , 1995 .

[22]  Lian-Ping Wang,et al.  Parallel implementation and scalability analysis of 3D Fast Fourier Transform using 2D domain decomposition , 2013, Parallel Comput..

[23]  Aria Abubakar,et al.  Application of the nearly perfectly matched layer in acoustic wave modeling , 2007 .

[24]  G. McMechan,et al.  True-amplitude prestack depth migration , 2007 .

[25]  George A. McMechan,et al.  Comparison of two viscoacoustic propagators for Q-compensated reverse time migration , 2016 .

[26]  J. Etgen,et al.  An overview of depth imaging in exploration geophysics , 2009 .

[27]  S. Bickel,et al.  Plane-wave Q deconvolution , 1985 .

[28]  E. Baysal,et al.  Reverse time migration , 1983 .