A Unifying Framework and Comparison of Algorithms for Non‐negative Matrix Factorisation

[1]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[2]  D. Hunter,et al.  A Tutorial on MM Algorithms , 2004 .

[3]  M. Stratton,et al.  Deciphering Signatures of Mutational Processes Operative in Human Cancer , 2013, Cell reports.

[4]  Nancy Bertin,et al.  Nonnegative Matrix Factorization with the Itakura-Saito Divergence: With Application to Music Analysis , 2009, Neural Computation.

[5]  Emmanuel J. Candès,et al.  Adaptive Restart for Accelerated Gradient Schemes , 2012, Foundations of Computational Mathematics.

[6]  Ali Taylan Cemgil,et al.  Nonnegative matrix factorizations as probabilistic inference in composite models , 2009, 2009 17th European Signal Processing Conference.

[7]  A. Børresen-Dale,et al.  Mutational Processes Molding the Genomes of 21 Breast Cancers , 2012, Cell.

[8]  M. Drton Maximum likelihood estimation in Gaussian AMP chain graph models and Gaussian ancestral graph models , 2004 .

[9]  R. Varadhan,et al.  Simple and Globally Convergent Methods for Accelerating the Convergence of Any EM Algorithm , 2008 .

[10]  Aurélien Garivier,et al.  On the Complexity of Best-Arm Identification in Multi-Armed Bandit Models , 2014, J. Mach. Learn. Res..

[11]  Eric C. Chi,et al.  A Brief Survey of Modern Optimization for Statisticians , 2014, International statistical review = Revue internationale de statistique.

[12]  Sandro Morganella,et al.  Mutational Signatures in Breast Cancer: The Problem at the DNA Level , 2017, Clinical Cancer Research.

[13]  Mary C. Meyer A Simple New Algorithm for Quadratic Programming with Applications in Statistics , 2013, Commun. Stat. Simul. Comput..