Microwave Metamaterials

Metamaterials (MTMs) are artificial materials composed of subwavelength particles, which are engineered to achieve various electromagnetic (EM) responses. Since the first practical realization and experimental verification of MTMs by Pendry et al. in the late 1990s, great efforts have been made in theoretical study as well as practical utilizations. Among them, the effective medium theory provides a basis for the description as well as an accurate method for the design of MTMs, and leads to the development of many novel devices with interesting functionalities. With the employment of transformation and geometric optics, more high‐performance engineering applications have been realized using MTMs. Recently, the concept of metasurfaces has been proposed, which further promotes the practical applications of advanced MTMs. Herein, the effective medium theory is first introduced. After that, typical devices and applications based on conventional bulk MTMs and newly‐conceived metasurfaces are summarized to demonstrate the flexible capability of microwave MTMs in the manipulation of EM waves.

[1]  T. Cui,et al.  Interference-assisted kaleidoscopic meta-plexer for arbitrary spin-wavefront manipulation , 2019, Light, science & applications.

[2]  Qiang Cheng,et al.  Space-time-coding digital metasurfaces , 2018, Nature Communications.

[3]  T. Cui,et al.  Four-channel orbital angular momentum beam multiplexer designed with low-profile metasurfaces , 2019 .

[4]  T. Cui,et al.  Space‐Frequency‐Domain Gradient Metamaterials , 2018, Advanced Optical Materials.

[5]  Tie Jun Cui,et al.  Design of digital coding metasurfaces with independent controls of phase and amplitude responses , 2018, Applied Physics Letters.

[6]  Jian Tang,et al.  Light‐Controllable Digital Coding Metasurfaces , 2018, Advanced science.

[7]  Feng Xu,et al.  A Survey on the Low-Dimensional-Model-based Electromagnetic Imaging , 2018, Found. Trends Signal Process..

[8]  Athar Mahboob,et al.  A novel EM concentrator with open-concentrator region based on multi-folded transformation optics , 2018, Scientific Reports.

[9]  T. Cui,et al.  A multidirectional cloak for visible light , 2018 .

[10]  T. Cui,et al.  Broadband metamaterial lens antennas with special properties by controlling both refractive-index distribution and feed directivity , 2018 .

[11]  Arka Majumdar,et al.  Metasurface optics for full-color computational imaging , 2018, Science Advances.

[12]  Tie Jun Cui,et al.  Negative reflection and negative surface wave conversion from obliquely incident electromagnetic waves , 2018, Light: Science & Applications.

[13]  Xianzhong Chen,et al.  High-resolution grayscale image hidden in a laser beam , 2017, Light: Science & Applications.

[14]  T. Cui Microwave metamaterials , 2018 .

[15]  Shuang Zhang,et al.  Electromagnetic reprogrammable coding-metasurface holograms , 2017, Nature Communications.

[16]  Qiang Cheng,et al.  Full-State Controls of Terahertz Waves Using Tensor Coding Metasurfaces. , 2017, ACS applied materials & interfaces.

[17]  Xiangang Luo,et al.  Dynamical beam manipulation based on 2-bit digitally-controlled coding metasurface , 2017, Scientific Reports.

[18]  Bo O. Zhu,et al.  A Reconfigurable Active Huygens' Metalens , 2017, Advanced materials.

[19]  Qiang Cheng,et al.  Frequency‐Dependent Dual‐Functional Coding Metasurfaces at Terahertz Frequencies , 2016 .

[20]  Qiang Cheng,et al.  Controlling the Bandwidth of Terahertz Low‐Scattering Metasurfaces , 2016 .

[21]  Maokun Li,et al.  A programmable metasurface with dynamic polarization, scattering and focusing control , 2016, Scientific Reports.

[22]  Qiang Cheng,et al.  Anomalous Refraction and Nondiffractive Bessel-Beam Generation of Terahertz Waves through Transmission-Type Coding Metasurfaces , 2016 .

[23]  Xiang Wan,et al.  Convolution Operations on Coding Metasurface to Reach Flexible and Continuous Controls of Terahertz Beams , 2016, Advanced science.

[24]  Shuo Liu,et al.  Information entropy of coding metasurface , 2016, Light: Science & Applications.

[25]  W. T. Chen,et al.  Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging , 2016, Science.

[26]  X. Wan,et al.  Manipulations of Dual Beams with Dual Polarizations by Full‐Tensor Metasurfaces , 2016 .

[27]  Xiang Wan,et al.  Transmission-Type 2-Bit Programmable Metasurface for Single-Sensor and Single-Frequency Microwave Imaging , 2016, Scientific Reports.

[28]  T. Cui,et al.  Shaping 3D Path of Electromagnetic Waves Using Gradient‐Refractive‐Index Metamaterials , 2016, Advanced science.

[29]  Tian Yi Chen,et al.  Field-programmable beam reconfiguring based on digitally-controlled coding metasurface , 2016, Scientific Reports.

[30]  Qiang Cheng,et al.  Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves , 2016, Light: Science & Applications.

[31]  T. Cui,et al.  Isotropic Holographic Metasurfaces for Dual‐Functional Radiations without Mutual Interferences , 2016 .

[32]  Houtong Chen,et al.  Anomalous Terahertz Reflection and Scattering by Flexible and Conformal Coding Metamaterials , 2015 .

[33]  Guoxing Zheng,et al.  Helicity multiplexed broadband metasurface holograms , 2015, Nature Communications.

[34]  Qiang Cheng,et al.  Broadband diffusion of terahertz waves by multi-bit coding metasurfaces , 2015, Light: Science & Applications.

[35]  Xiang Wan,et al.  Independent controls of orthogonally polarized transmitted waves using a Huygens metasurface , 2015 .

[36]  Lei Zhou,et al.  Photonic Spin Hall Effect with Nearly 100% Efficiency , 2015 .

[37]  T. Cui,et al.  An Optically Controllable Transformation‐dc Illusion Device , 2015, Advanced materials.

[38]  Tie Jun Cui,et al.  A Broadband Bessel Beam Launcher Using Metamaterial Lens , 2015, Scientific Reports.

[39]  Zhen Tian,et al.  A Broadband Metasurface‐Based Terahertz Flat‐Lens Array , 2015 .

[40]  T. Cui,et al.  Second-Harmonic Generation of Spoof Surface Plasmon Polaritons Using Nonlinear Plasmonic Metamaterials , 2015, 1505.03260.

[41]  Ji Zhou,et al.  Magnetically tunable wideband microwave filter using ferrite-based metamaterials , 2015 .

[42]  Tie Jun Cui,et al.  Independent Controls of Differently-Polarized Reflected Waves by Anisotropic Metasurfaces , 2015, Scientific Reports.

[43]  Chih-Ming Wang,et al.  Aluminum plasmonic multicolor meta-hologram. , 2015, Nano letters.

[44]  Tie Jun Cui,et al.  Suppressing Side-Lobe Radiations of Horn Antenna by Loading Metamaterial Lens , 2015, Scientific Reports.

[45]  Bing-zheng Xu,et al.  High-efficiency transition between rectangular waveguide and domino plasmonic waveguide , 2015 .

[46]  Fujiang Lin,et al.  Trapping of surface plasmon wave through gradient corrugated strip with underlayer ground and manipulating its propagation , 2015 .

[47]  Tie Jun Cui,et al.  Broadband amplification of spoof surface plasmon polaritons at microwave frequencies , 2015 .

[48]  Qiang Cheng,et al.  Frequency-Controls of Electromagnetic Multi-Beam Scanning by Metasurfaces , 2014, Scientific Reports.

[49]  T. Cui,et al.  Independent control of differently-polarized waves using anisotropic gradient-index metamaterials , 2014, Scientific Reports.

[50]  Chunmei Ouyang,et al.  Broadband Metasurfaces with Simultaneous Control of Phase and Amplitude , 2014, Advanced materials.

[51]  Qiang Cheng,et al.  Coding metamaterials, digital metamaterials and programmable metamaterials , 2014, Light: Science & Applications.

[52]  N. Yu,et al.  Flat optics with designer metasurfaces. , 2014, Nature materials.

[53]  T. Cui,et al.  Broadband All‐Dielectric Magnifying Lens for Far‐Field High‐Resolution Imaging , 2013, Advanced materials.

[54]  Qiaofeng Tan,et al.  Three-dimensional optical holography using a plasmonic metasurface , 2013, Nature Communications.

[55]  Vladimir M. Shalaev,et al.  Metasurface holograms for visible light , 2013, Nature Communications.

[56]  T. Cui,et al.  A Negative Conductivity Material Makes a dc Invisibility Cloak Hide an Object at a Distance , 2013 .

[57]  Zhen Tian,et al.  Broadband Terahertz Wave Deflection Based on C‐shape Complex Metamaterials with Phase Discontinuities , 2013, Advanced materials.

[58]  Shuang Zhang,et al.  Creation of Ghost Illusions Using Wave Dynamics in Metamaterials , 2013 .

[59]  Guangming Wang,et al.  Three‐Dimensional Super Lens Composed of Fractal Left‐Handed Materials , 2013 .

[60]  Qiaofeng Tan,et al.  Reversible Three‐Dimensional Focusing of Visible Light with Ultrathin Plasmonic Flat Lens , 2013 .

[61]  D. R. Chowdhury,et al.  Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction , 2013, Science.

[62]  Tie Jun Cui,et al.  Planar plasmonic metamaterial on a thin film with nearly zero thickness , 2013 .

[63]  S. Ornes Metamaterials , 2013, Proceedings of the National Academy of Sciences.

[64]  A. Kildishev,et al.  Planar Photonics with Metasurfaces , 2013, Science.

[65]  Qiaofeng Tan,et al.  Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity , 2013, Light: Science & Applications.

[66]  Tie Jun Cui,et al.  Conformal surface plasmons propagating on ultrathin and flexible films , 2012, Proceedings of the National Academy of Sciences.

[67]  R. Blanchard,et al.  Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. , 2012, Nano letters.

[68]  Shulin Sun,et al.  Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. , 2012, Nature materials.

[69]  Koray Aydin,et al.  Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. , 2011, Nature communications.

[70]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[71]  Ethan Schonbrun,et al.  Reconfigurable imaging systems using elliptical nanowires. , 2011, Nano letters.

[72]  Qiang Cheng,et al.  Shrinking an arbitrary object as one desires using metamaterials , 2011 .

[73]  T. Cui,et al.  Three-dimensional broadband and broad-angle transformation-optics lens. , 2010, Nature communications.

[74]  T. Cui,et al.  An omnidirectional electromagnetic absorber made of metamaterials , 2010 .

[75]  T. Cui,et al.  Three-dimensional broadband ground-plane cloak made of metamaterials , 2010, Nature communications.

[76]  David R. Smith,et al.  Extreme-angle broadband metamaterial lens. , 2010, Nature materials.

[77]  Qiang Cheng,et al.  Illusion media: Generating virtual objects using realizable metamaterials , 2009, 0909.3619.

[78]  C. Holloway,et al.  A discussion on the interpretation and characterization of metafilms/metasurfaces: The two-dimensional equivalent of metamaterials , 2009 .

[79]  M. Wegener,et al.  Gold Helix Photonic Metamaterial as Broadband Circular Polarizer , 2009, Science.

[80]  X. Zhang,et al.  Dielectric Optical Cloak , 2009, 0904.3602.

[81]  M. Lipson,et al.  Silicon nanostructure cloak operating at optical frequencies , 2009, 0904.3508.

[82]  David R. Smith,et al.  Broadband Ground-Plane Cloak , 2009, Science.

[83]  T. Tyc,et al.  Broadband Invisibility by Non-Euclidean Cloaking , 2009, Science.

[84]  Tie Jun Cui,et al.  Metamaterial polarizers by electric-field-coupled resonators , 2008 .

[85]  David R. Smith,et al.  Invisibility cloak without singularity , 2008, 0809.2317.

[86]  Vladimir M. Shalaev,et al.  Optical cloaking with metamaterials , 2006, physics/0611242.

[87]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[88]  U. Leonhardt Optical Conformal Mapping , 2006, Science.

[89]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[90]  David R. Smith,et al.  Electric-field-coupled resonators for negative permittivity metamaterials , 2006 .

[91]  J. Sambles,et al.  Experimental Verification of Designer Surface Plasmons , 2005, Science.

[92]  J. Pendry,et al.  Surfaces with holes in them: new plasmonic metamaterials , 2005 .

[93]  J. Pendry,et al.  Mimicking Surface Plasmons with Structured Surfaces , 2004, Science.

[94]  Jiangtao Huangfu,et al.  Experimental confirmation of negative refractive index of a metamaterial composed of Ω-like metallic patterns , 2004 .

[95]  M. Rosenbluth,et al.  Limitations on subdiffraction imaging with a negative refractive index slab , 2002, cond-mat/0206568.

[96]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[97]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .