Solar cells based on block copolymer semiconductor nanowires: effects of nanowire aspect ratio.

The solution-phase self-assembly of nanowires (NWs) from diblock copolymer semiconductors, poly(3-butylthiophene)-block-poly(3-octylthiophene), of different block compositions gave crystalline NWs of similar width (13-16 nm) but a tunable average aspect ratio (length/width) of 50-260. The power conversion efficiency of bulk heterojunction solar cells comprising the diblock copolythiophene NWs and PC(71)BM was found to increase with increasing aspect ratio, reaching 3.4% at the highest average aspect ratio of 260. The space charge limited current mobility of holes in neat films of the copolymer NWs and in copolymer NWs/PC(71)BM films (∼1.0 × 10(-4) cm(2)/(V s)) was invariant with aspect ratio, reflecting the parallel orientation of the NWs to the substrate. The enhancement of photovoltaic efficiency with increasing aspect ratio of NWs was explained in terms of increased exciton and charge photogeneration and collection in the bulk heterojunction solar cells.

[1]  Shijun Jia,et al.  Polymer–Fullerene Bulk‐Heterojunction Solar Cells , 2009, Advanced materials.

[2]  Ligui Li,et al.  Morphology and crystalline transition of poly (3-butylthiophene) associated with its polymorphic modifications , 2008 .

[3]  P. Adriaensens,et al.  Efficient formation, isolation and characterization of poly(3-alkylthiophene) nanofibres: probing order as a function of side-chain length , 2009 .

[4]  Jean M. J. Fréchet,et al.  Polymer—Fullerene Composite Solar Cells. , 2008 .

[5]  S. Darling Block copolymers for photovoltaics , 2009 .

[6]  S. Jenekhe,et al.  Enhanced Performance of Bulk Heterojunction Solar Cells Using Block Copoly(3-alkylthiophene)s , 2010 .

[7]  S. Darling,et al.  Self-Assembly of Poly(3-hexylthiophene)-block-polylactide Block Copolymer and Subsequent Incorporation of Electron Acceptor Material , 2009 .

[8]  Xiong Gong,et al.  Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology , 2005 .

[9]  Samson A. Jenekhe,et al.  Nanolayered Heterojunctions of Donor and Acceptor Conjugated Polymers of Interest in Light Emitting and Photovoltaic Devices: Photoinduced Electron Transfer at Polythiophene/Polyquinoline Interfaces , 2001 .

[10]  K. Ihn,et al.  Whiskers of poly(3‐alkylthiophene)s , 1993 .

[11]  S. Heike,et al.  Effective Production of Poly(3-alkylthiophene) Nanofibers by means of Whisker Method using Anisole Solvent: Structural, Optical, and Electrical Properties , 2008 .

[12]  P. Blom,et al.  Electric-field and temperature dependence of the hole mobility in poly(p-phenylene vinylene) , 1997 .

[13]  M. Thelakkat,et al.  Electron‐Conducting Block Copolymers: Morphological, Optical, and Electronic Properties , 2008 .

[14]  A J Heeger,et al.  Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. , 2007, Nature materials.

[15]  S. Jenekhe,et al.  Regioregular Poly(3-pentylthiophene): Synthesis, Self-Assembly of Nanowires, High-Mobility Field-Effect Transistors, and Efficient Photovoltaic Cells , 2009 .

[16]  P. Balraju,et al.  Enhanced Performance of Bulk Heterojunction Solar Cells Using Novel Alternating Phenylenevinylene Copolymers of Low Band Gap with Cyanovinylene 4-Nitrophenyls , 2010 .

[17]  Gang Li,et al.  Control of the nanoscale crystallinity and phase separation in polymer solar cells , 2008 .

[18]  J. Zou,et al.  Controlling Poly(3-hexylthiophene) Crystal Dimension: Nanowhiskers and Nanoribbons , 2009 .

[19]  P. Murgatroyd,et al.  Theory of space-charge-limited current enhanced by Frenkel effect , 1970 .

[20]  Valentin D. Mihailetchi,et al.  Charge Transport and Photocurrent Generation in Poly(3‐hexylthiophene): Methanofullerene Bulk‐Heterojunction Solar Cells , 2006 .

[21]  Luping Yu,et al.  Development of new semiconducting polymers for high performance solar cells. , 2009, Journal of the American Chemical Society.

[22]  Michael D. McGehee,et al.  Conjugated Polymer Photovoltaic Cells , 2004 .

[23]  L. Bendersky,et al.  Electron Diffraction Using Transmission Electron Microscopy , 2001, Journal of research of the National Institute of Standards and Technology.

[24]  N. S. Sariciftci,et al.  Conjugated polymer-based organic solar cells. , 2007, Chemical reviews.

[25]  Zhiqun Lin,et al.  Self-assembly of all-conjugated poly(3-alkylthiophene) diblock copolymer nanostructures from mixed selective solvents. , 2010, ACS nano.

[26]  S. Jenekhe,et al.  Crystalline Random Conjugated Copolymers with Multiple Side Chains: Tunable Intermolecular Interactions and Enhanced Charge Transport and Photovoltaic Properties , 2010 .

[27]  Seth B. Darling,et al.  Optoelectronics using block copolymers , 2010 .

[28]  S. Barlow,et al.  A Comparative Study of Charge Mobility Measurements in a Diamine and in a Hexaazatrinaphthylene Using Different Techniques , 2008 .

[29]  Xiaoniu Yang,et al.  Crystalline Organization of a Methanofullerene as Used for Plastic Solar‐Cell Applications , 2004 .

[30]  Gang Li,et al.  “Solvent Annealing” Effect in Polymer Solar Cells Based on Poly(3‐hexylthiophene) and Methanofullerenes , 2007 .

[31]  K. Ito,et al.  Nanofiber preparation by whisker method using solvent-soluble conducting polymers , 2008 .

[32]  R. Mezzenga,et al.  Crystalline Diblock Conjugated Copolymers: Synthesis, Self-Assembly, and Microphase Separation of Poly(3-butylthiophene)-b-poly(3-octylthiophene) , 2009 .

[33]  Stéphane Guillerez,et al.  Poly(3‐hexylthiophene) Fibers for Photovoltaic Applications , 2007 .

[34]  T. Emrick,et al.  Donor−Acceptor Poly(thiophene-block-perylene diimide) Copolymers: Synthesis and Solar Cell Fabrication , 2009 .

[35]  D. Ginger,et al.  Polymer nanowire/fullerene bulk heterojunction solar cells: how nanostructure determines photovoltaic properties. , 2010, ACS nano.

[36]  Niyazi Serdar Sariciftci,et al.  Effects of Postproduction Treatment on Plastic Solar Cells , 2003 .

[37]  C. Frisbie,et al.  Field effect transport and trapping in regioregular polythiophene nanofibers , 2004 .

[38]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[39]  R. Segalman,et al.  Block Copolymers for Organic Optoelectronics , 2009 .

[40]  Valentin D. Mihailetchi,et al.  Device Physics of Polymer:Fullerene Bulk Heterojunction Solar Cells , 2007 .

[41]  S. Jenekhe,et al.  Bulk Heterojunction Solar Cells from Poly(3-butylthiophene)/Fullerene Blends: In Situ Self-Assembly of Nanowires, Morphology, Charge Transport, and Photovoltaic Properties , 2008 .

[42]  Jin Young Kim,et al.  Processing additives for improved efficiency from bulk heterojunction solar cells. , 2008, Journal of the American Chemical Society.

[43]  R. Mezzenga,et al.  Poly(3‐hexylthiophene)‐b‐poly(3‐cyclohexylthiophene): Synthesis, microphase separation, thin film transistors, and photovoltaic applications , 2010 .

[44]  Samson A Jenekhe,et al.  Highly efficient solar cells based on poly(3-butylthiophene) nanowires. , 2008, Journal of the American Chemical Society.

[45]  Samson A. Jenekhe,et al.  One-Dimensional Nanostructures of π-Conjugated Molecular Systems: Assembly, Properties, and Applications from Photovoltaics, Sensors, and Nanophotonics to Nanoelectronics† , 2011 .

[46]  A. Chiche,et al.  Charge separation at self-assembled nanostructured bulk interface in block copolymers. , 2006, Angewandte Chemie.

[47]  Gang Li,et al.  For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4% , 2010, Advanced materials.