Telomere Dysfunction Induces Sirtuin Repression that Drives Telomere-Dependent Disease.

[1]  J. Lingner,et al.  PRDX1 and MTH1 cooperate to prevent ROS-mediated inhibition of telomerase , 2018, Genes & development.

[2]  J. Zweier,et al.  A Potent and Specific CD38 Inhibitor Ameliorates Age-Related Metabolic Dysfunction by Reversing Tissue NAD+ Decline. , 2018, Cell metabolism.

[3]  John P. Lynch,et al.  Mutual reinforcement between telomere capping and canonical Wnt signalling in the intestinal stem cell niche , 2017, Nature Communications.

[4]  J. Baur,et al.  Nicotinamide adenine dinucleotide biosynthesis promotes liver regeneration , 2017, Hepatology.

[5]  S. Imai,et al.  Long-Term Administration of Nicotinamide Mononucleotide Mitigates Age-Associated Physiological Decline in Mice. , 2016, Cell metabolism.

[6]  H. Blau,et al.  Telomere shortening and metabolic compromise underlie dystrophic cardiomyopathy , 2016, Proceedings of the National Academy of Sciences.

[7]  D. Bartel,et al.  Predicting effective microRNA target sites in mammalian mRNAs , 2015, eLife.

[8]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[9]  David M. Wilson,et al.  A high-fat diet and NAD(+) activate Sirt1 to rescue premature aging in cockayne syndrome. , 2014, Cell metabolism.

[10]  L. Guarente,et al.  NAD+ and sirtuins in aging and disease. , 2014, Trends in cell biology.

[11]  L. Guarente,et al.  The NAD+/Sirtuin Pathway Modulates Longevity through Activation of Mitochondrial UPR and FOXO Signaling , 2013, Cell.

[12]  Martin Reczko,et al.  DIANA-microT web server v5.0: service integration into miRNA functional analysis workflows , 2013, Nucleic Acids Res..

[13]  E. Blackburn,et al.  The telomere syndromes , 2012, Nature Reviews Genetics.

[14]  C. Cantó,et al.  The role of PARP-1 and PARP-2 enzymes in metabolic regulation and disease. , 2012, Cell metabolism.

[15]  Joana A. Vidigal,et al.  Intact p53-Dependent Responses in miR-34–Deficient Mice , 2012, PLoS genetics.

[16]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[17]  J. Auwerx,et al.  The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. , 2012, Cell metabolism.

[18]  B. Luke,et al.  Deregulated telomere transcription causes replication-dependent telomere shortening and promotes cellular senescence , 2012, Nucleic acids research.

[19]  Johan Auwerx,et al.  Sirtuins as regulators of metabolism and healthspan , 2012, Nature Reviews Molecular Cell Biology.

[20]  Sebastian D. Mackowiak,et al.  Identification of Novel and Known miRNAs in Deep‐Sequencing Data with miRDeep2 , 2011, Current protocols in bioinformatics.

[21]  S. Imai,et al.  Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. , 2011, Cell metabolism.

[22]  Norbert Gretz,et al.  miRWalk - Database: Prediction of possible miRNA binding sites by "walking" the genes of three genomes , 2011, J. Biomed. Informatics.

[23]  M. Manns,et al.  Telomerase gene mutations are associated with cirrhosis formation , 2011, Hepatology.

[24]  L. Chin,et al.  Telomere dysfunction induces metabolic and mitochondrial compromise , 2011, Nature.

[25]  M. Blasco,et al.  SIRT1 contributes to telomere maintenance and augments global homologous recombination , 2010, The Journal of cell biology.

[26]  Huabing Zhang,et al.  Sirtuin 3, a New Target of PGC-1α, Plays an Important Role in the Suppression of ROS and Mitochondrial Biogenesis , 2010, PloS one.

[27]  Ronald A. DePinho,et al.  Linking functional decline of telomeres, mitochondria and stem cells during ageing , 2010, Nature.

[28]  N. Young,et al.  Telomere diseases. , 2009, The New England journal of medicine.

[29]  F. Alt,et al.  SIRT1 Redistribution on Chromatin Promotes Genomic Stability but Alters Gene Expression during Aging , 2008, Cell.

[30]  M. Malanga,et al.  Rapid regulation of telomere length is mediated by poly(ADP-ribose) polymerase-1 , 2008, Nucleic acids research.

[31]  M. Yamakuchi,et al.  miR-34a repression of SIRT1 regulates apoptosis , 2008, Proceedings of the National Academy of Sciences.

[32]  S. Friedman,et al.  Experimental models of hepatocellular carcinoma. , 2008, Journal of hepatology.

[33]  E. Bober,et al.  Sirt7 Increases Stress Resistance of Cardiomyocytes and Prevents Apoptosis and Inflammatory Cardiomyopathy in Mice , 2008, Circulation research.

[34]  Howard Y. Chang,et al.  SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin , 2008, Nature.

[35]  邓伟平,et al.  Dyskeratosis congenita , 2007 .

[36]  P. Puigserver,et al.  Resveratrol Improves Mitochondrial Function and Protects against Metabolic Disease by Activating SIRT1 and PGC-1α , 2006, Cell.

[37]  Yvonne Tay,et al.  A Pattern-Based Method for the Identification of MicroRNA Binding Sites and Their Corresponding Heteroduplexes , 2006, Cell.

[38]  Yi-Song Wang,et al.  PARP1 Is a TRF2-associated poly(ADP-ribose)polymerase and protects eroded telomeres. , 2006, Molecular biology of the cell.

[39]  R. Giegerich,et al.  Fast and effective prediction of microRNA/target duplexes. , 2004, RNA.

[40]  Anton J. Enright,et al.  MicroRNA targets in Drosophila , 2003, Genome Biology.

[41]  S. Gasser,et al.  Long-range silencing and position effects at telomeres and centromeres: parallels and differences , 2003, Cellular and Molecular Life Sciences CMLS.

[42]  L. Guarente,et al.  Sir2 links chromatin silencing, metabolism, and aging. , 2000, Genes & development.

[43]  R. DePinho,et al.  Inhibition of experimental liver cirrhosis in mice by telomerase gene delivery. , 2000, Science.

[44]  L. Guarente,et al.  MEC1-Dependent Redistribution of the Sir3 Silencing Protein from Telomeres to DNA Double-Strand Breaks , 1999, Cell.

[45]  Sophie G. Martin,et al.  Relocalization of Telomeric Ku and SIR Proteins in Response to DNA Strand Breaks in Yeast , 1999, Cell.

[46]  Lynda Chin,et al.  p53 Deficiency Rescues the Adverse Effects of Telomere Loss and Cooperates with Telomere Dysfunction to Accelerate Carcinogenesis , 1999, Cell.

[47]  G. Saretzki,et al.  Mild hyperoxia shortens telomeres and inhibits proliferation of fibroblasts: a model for senescence? , 1995, Experimental cell research.

[48]  Barbara L. Billington,et al.  Position effect at S. cerevisiae telomeres: Reversible repression of Pol II transcription , 1990, Cell.

[49]  H. Cortez‐Pinto,et al.  miR-34a/SIRT1/p53 is suppressed by ursodeoxycholic acid in the rat liver and activated by disease severity in human non-alcoholic fatty liver disease. , 2013, Journal of hepatology.

[50]  Ruth I. Tennen,et al.  Chromatin regulation and genome maintenance by mammalian SIRT6. , 2011, Trends in biochemical sciences.

[51]  Sharon A Savage,et al.  Dyskeratosis congenita. , 2009, Hematology/oncology clinics of North America.

[52]  H. Cannell Dyskeratosis congenita. , 1971, The British journal of oral surgery.