Semantic data modeling of spatiotemporal database applications

Due to the ubiquity of space‐related and time‐related information, the ability of a database system to deal with both spatial and temporal phenomenon facts in a spatiotemporal applications is highly desired. However, uncertain and fuzzy information in these applications highly increases the complexity of database modeling. In this paper we introduce a semantic data modeling approach for spatiotemporal database applications. We specifically focus on various aspects of spatial and temporal database issues and uncertainty and fuzziness in various abstract levels. The semantic data model that we introduce in this paper utilizes unified modeling language (UML) for handling spatiotemporal information, uncertainty, and fuzziness especially at the conceptual level of database design. An environmental information system (EIS) application is used to illustrate our modeling approach and extension made to UML. By incorporating uncertainty and fuzziness into the semantic data model of a spatiotemporal EIS database application, one can handle pollution summary, analysis, and even pollution predictions, in addition to the other common uses of a database system. © 2001 John Wiley & Sons, Inc.

[1]  Christian S. Jensen,et al.  Temporal Entity-RelationshipModels | a Survey , 1996 .

[2]  Frederick E. Petry,et al.  Modeling Spatial Relationships within a Fuzzy Framework , 1998, J. Am. Soc. Inf. Sci..

[3]  Christophe Claramunt,et al.  Design Patterns for Spatio-temporal Processes , 1998 .

[4]  Jonathan Lee,et al.  Modeling Imprecise Requirements with Fuzzy Objects , 1999, Inf. Sci..

[5]  Ramez Elmasri,et al.  Fundamentals of Database Systems , 1989 .

[6]  James F. Baldwin,et al.  A fuzzy relational inference language , 1984 .

[7]  Ricky K. Taira,et al.  Knowledge-Based Image Retrieval with Spatial and Temporal Constructs , 1998, IEEE Trans. Knowl. Data Eng..

[8]  Adnan Yazici,et al.  Design and Implementation Issues in the Fuzzy Object-Oriented Data Model , 1998, Inf. Sci..

[9]  Christos Faloutsos,et al.  Advanced Database Systems , 1997, Lecture Notes in Computer Science.

[10]  L. Zadeh,et al.  An editorial perspective , 1978 .

[11]  Shashi Shekhar,et al.  Spatial Databases - Accomplishments and Research Needs , 1999, IEEE Trans. Knowl. Data Eng..

[12]  Adnan Yazici,et al.  Fuzzy Database Modeling , 1998, J. Database Manag..

[13]  L. Zadeh Fuzzy sets as a basis for a theory of possibility , 1999 .

[14]  Sharon J. Derry,et al.  Individualized Tutoring Using an Intelligent Fuzzy Temporal Relational Database , 1990, Int. J. Man Mach. Stud..

[15]  Simon Parsons,et al.  Addendum to "Current Approaches to Handling Imperfect Information in Data and Knowledge Bases" , 1996, IEEE Trans. Knowl. Data Eng..

[16]  Christian Freksa,et al.  Spatial and Temporal Structures in Cognitive Processes , 1997, Foundations of Computer Science: Potential - Theory - Cognition.

[17]  Werasak Kurutach,et al.  On Temporal-fuzziness in Temporal Fuzzy Databases , 1993, DEXA.

[18]  Nectaria Tryfona,et al.  An extended entity-relationship model for geographic applications , 1997, SGMD.

[19]  Kwong-Sak Leung,et al.  A Fuzzy Expert Database System , 1989, Data Knowl. Eng..

[20]  Soumitra Dutta,et al.  Qualitative Spatial Reasoning: A Semi-quantitative Approach Using Fuzzy Logic , 1989, SSD.

[21]  Michael F. Worboys,et al.  A Unified Model for Spatial and Temporal Information , 1994, Comput. J..

[22]  강문설 [서평]「The Unified Modeling Language User Guide」 , 1999 .

[23]  Markus Schneider,et al.  Uncertainty Management for Spatial Data in Databases: Fuzzy Spatial Data Types , 1999, SSD.

[24]  William E. Lorensen,et al.  Object-Oriented Modeling and Design , 1991, TOOLS.

[25]  Tadao Murata,et al.  Temporal Uncertainty and Fuzzy-Timing High-Level Petri Nets , 1996, Application and Theory of Petri Nets.

[26]  Nectaria Tryfona,et al.  Requirements, definitions, and notations for spatiotemporal application environments , 1998, GIS '98.

[27]  Adnan Yazici,et al.  Handling complex and uncertain information in the ExIFO and NF2 data models , 1999, IEEE Trans. Fuzzy Syst..

[28]  Wilfried Brauer,et al.  Foundations of computer science : potential--theory--cognition , 1997 .

[29]  David Jordan C++ Object Databases: Programming with the ODMG Standard , 1997 .